
ttcrpy
Release 1.3.4

Bernard Giroux

Feb 07, 2024

CONTENTS:

1 Getting started 3
1.1 Installing ttcrpy . 3
1.2 Simple examples . 3

2 Model discretization 5
2.1 2D models . 5
2.2 3D models . 5
2.3 Assigning velocity/slowness . 5

3 Algorithms 7
3.1 Shortest-Path . 7
3.2 Dynamic Shortest-Path . 8
3.3 Fast-Sweeping . 9
3.4 Computing traveltimes from raypaths . 10

4 Performance 11
4.1 3D Rectilinear Grids . 11

5 Documentation for the python code 19
5.1 Module rgrid . 19
5.2 Module tmesh . 35

6 References 47

7 Indices and tables 49

Python Module Index 51

Index 53

i

ii

ttcrpy, Release 1.3.4

ttcrpy is a package for computing traveltimes and raytracing that was developed with geophysical applications in mind,
e.g. ray-based seismic/GPR tomography and microseismic event location (joint hypocenter-velocity inversion). The
package contains code to perform computation on 2D and 3D rectilinear grids, as well as 2D triangular and 3D tetra-
hedral meshes. Three different algorithms have been implemented: the Fast-Sweeping Method, the Shortest-Path
Method, and the Dynamic Shortest-Path Method. Calculations can be run in parallel on a multi-core machine. The
core computing code is written in C++, and has been wrapped with cython.

The source code of this project is hosted on GitHub.

If you use ttcrpy, please cite

Giroux B. 2021. ttcrpy: A Python package for traveltime computation and raytracing. SoftwareX, vol. 16, 100834.
doi: 10.1016/j.softx.2021.100834 https://www.sciencedirect.com/science/article/pii/S2352711021001217

CONTENTS: 1

https://github.com/groupeLIAMG/ttcr
https://www.sciencedirect.com/science/article/pii/S2352711021001217

ttcrpy, Release 1.3.4

2 CONTENTS:

CHAPTER

ONE

GETTING STARTED

1.1 Installing ttcrpy

You can use pip to install the package by doing:

pip install ttcrpy

1.1.1 Requirements

ttcrpy needs the following packages:

• numpy (https://numpy.org)

• scipy (https://www.scipy.org)

• vtk (https://www.vtk.org)

1.2 Simple examples

An example showing how easy it is to use the code can be found at https://github.com/groupeLIAMG/ttcr/blob/master/
examples/example_Grid3d.ipynb

A second example illustrating how to run jobs in parallel is given at https://github.com/groupeLIAMG/ttcr/blob/master/
examples/example_tmesh_parallel.ipynb

An example illutrating how to use gmsh to build models with specific geometries is https://github.com/groupeLIAMG/
ttcr/blob/master/examples/example4.ipynb

Raytracing in anisotorpic media is shown in https://github.com/groupeLIAMG/ttcr/blob/master/examples/example5.
ipynb

3

https://numpy.org
https://www.scipy.org
https://www.vtk.org
https://github.com/groupeLIAMG/ttcr/blob/master/examples/example_Grid3d.ipynb
https://github.com/groupeLIAMG/ttcr/blob/master/examples/example_Grid3d.ipynb
https://github.com/groupeLIAMG/ttcr/blob/master/examples/example_tmesh_parallel.ipynb
https://github.com/groupeLIAMG/ttcr/blob/master/examples/example_tmesh_parallel.ipynb
https://github.com/groupeLIAMG/ttcr/blob/master/examples/example4.ipynb
https://github.com/groupeLIAMG/ttcr/blob/master/examples/example4.ipynb
https://github.com/groupeLIAMG/ttcr/blob/master/examples/example5.ipynb
https://github.com/groupeLIAMG/ttcr/blob/master/examples/example5.ipynb

ttcrpy, Release 1.3.4

4 Chapter 1. Getting started

CHAPTER

TWO

MODEL DISCRETIZATION

ttcrpy supports a number of discretization schemes. 2D and 3D models are possible.

2.1 2D models

Rectilinear grids and triangular meshes can be built to perform the calculations. By convention, the coordinate axis
system is (x, z), e.g. when saving the models to VTK format.

2.2 3D models

Rectilinear grids and tetrahedral meshes can be used for 3D calculations.

2.3 Assigning velocity/slowness

Prior to performing traveltime computations, it is necessary to define the slowness distribution in space. Two options
are possible.

5

ttcrpy, Release 1.3.4

In the leftmost case, slowness values are assigned to the cells of the mesh. In the rightmost case, slowness values are
assigned to grid nodes. In the latter case, traveltime computation between two nodes is done by taking the average of
the slowness values at the two nodes.

The choice mostly depends on the application. For example, in traveltime tomography the problem is to use traveltime
data to estimate the slowness model. Rectilinear grids contain less cells than nodes, hence the number of unknown
parameters is less if slowness values are assigned to cells. With tetrahedral meshes, the number of nodes is less than
the number of cells, and the system to solve will be smaller if slowness values are assigned to the nodes.

6 Chapter 2. Model discretization

CHAPTER

THREE

ALGORITHMS

ttcrpy contains implementations of three raytracing algorithms.

3.1 Shortest-Path

In the shortest path method (SPM), a grid of nodes is used to build a graph by connecting each node to its neighbours.
The connections within the graph are assigned a length equal to the traveltime along it. Hence, by virtue of Fermat’s
principle which states that a seismic ray follows the minimum traveltime curve, the shortest path between two points
within the graph can be seen as an approximation of the raypath.

The SPM algorithm proceeds as follows. After construction of the graph, all nodes are initialized to infinite time except
the source nodes which are assigned their “time zero” values. A priority queue is then created and all source nodes are
pushed into it. Priority queues are a type of container specifically designed such that its first element is always the one
with highest priority, according to some strict weak ordering condition. In our case, the highest priority is attributed to
the node having the smallest traveltime value. The traveltime is computed for all nodes connected to the earliest source
node, the traveltime value at those nodes is updated with their new value, the parent node is set to the source node, and
these nodes then are pushed into the queue. Then, the node with highest priority is popped from the queue, and the
traveltime is computed at all nodes connected to it except the node parent. The traveltime and parent values are updated
if the traveltime is lower than the one previously assigned, and the nodes not already in the queue are pushed in. This
process is repeated until the queue is empty.

One particular aspect of the ttcrpy implementation is the concept of primary and secondary nodes. Primary nodes are
located at the vertexes of the cells, and secondary nodes are surrounding the cells on the edges and faces. In 2D, only
secondary edge nodes are introduced. Using secondary nodes allows improving the accuracy and angular coverage of
the discrete raypaths. The raypath, however, is an approximation which may deviate from the true raypath, as shown in
the figure below which illustrates the case for a homogeneous model.

7

ttcrpy, Release 1.3.4

3.2 Dynamic Shortest-Path

Using secondary nodes can be memory and computationally demanding in 3D. With the dynamic variant of the
Shortest-Path, the density of secondary nodes is intentionally set to a low value, and tertiary nodes are added to increase
the density in the vicinity of the source.

Primary

Secondary (edge)

Secondary (face)

Temporary (edge)

Temporary (face)

SPM_3 DSPM_3_1 DSPM_2_2

In ttcrpy, tertiary nodes are placed within a sphere centered on the source. Tests have shown that a radius of about
three times the mean cell edge length provides a good compromise between accuracy and computation time.

8 Chapter 3. Algorithms

ttcrpy, Release 1.3.4

3.3 Fast-Sweeping

The Fast-Sweeping Method avoids the requirement to maintain a sorted list of nodes which can be time consuming
and resource intensive. The method relies on Gauss-Seidel iterations to propagate the wave front. At each iteration,
all the domain nodes are visited and convergence is reached for nodes along characteristic curves parallel to sweep-
ing directions. The causality is ensured by using several Gauss-Seidel iterations with different directions so that all
characteristic curves are scanned.

3.3.1 Raypath computation

Contrary to the SPM and DSPM, the FSM algorithm does not store raypath segments in memory. When raypaths are
needed, they must be computed in a second step. The approach implemented in ttcrpy is to follow the steepest travel
time gradient, from the receiver to the source, as illustrated in the figure below.

3.3. Fast-Sweeping 9

ttcrpy, Release 1.3.4

3.4 Computing traveltimes from raypaths

With all three algorithms presented above, traveltimes are computed at all grid nodes. In older version of ttcrpy,
we used to interpolate traveltimes at the receivers coordinates and return the interpolated values. We have observed
however that results are more accurate if traveltimes are computed in a subsequent step, in which raypaths are computed
from the gradient of the traveltimes (as is done with the FSM when raypaths are needed), and traveltimes integrated
along the raypaths.

Computing traveltime from raypaths is available as an option for the fast-sweeping and dynamic shortest-path methods.
Because the computational cost of the second step is small in comparison to computing traveltime at the grid nodes,
the option is activated by default in 3D. We have observed however that for some model with very complex velocity
distributions, convergence issues might arise with this option activated, and we suggest to use the SPM method in
the latter case. By design, SPM implementations do not include that option, and traveltimes and raypaths are always
computed with values at grid nodes.

We have also observed that convergence issues arise when sources or receivers are in the cells at the edges of the
modeling domain. For that reason, special care should be put when defining input models and parameters.

10 Chapter 3. Algorithms

CHAPTER

FOUR

PERFORMANCE

4.1 3D Rectilinear Grids

4.1.1 Models

Performance tests were conducted using two different slowness models: a layer-cake model and a vertical gradient
model. Analytic solutions exist for both models, which allows accuracy evaluation. Besides, tests were done for three
level of discretization: coarse, medium, and fine. The following figures show the models.

11

ttcrpy, Release 1.3.4

The following figures show the results of the tests. In these figures, models are labelled by two letters: “L” or “G” for
layers or gradient, and “C”, “M” or “F” for coarse, medium or fine.

It is important to note that for the layers model, slowness values are assigned to cells, whereas for the gradient model,
slowness values are assigned to the nodes of the grid.

12 Chapter 4. Performance

ttcrpy, Release 1.3.4

4.1.2 Whole-grid accuracy

In this section, the accuracy of the traveltimes computed over the grid nodes (without using the option to update the
traveltimes using the raypaths) is evaluated. Error is computed for nodes for which the coordinates are round numbers.

Fast-Sweeping Method

The results are shown first for the FSM. Accuracy is better for the gradient model, except for the coarse models. In the
latter case, cells are too large (as thick as the layers) for the solver to yield satisfying accuracy.

100 101
0.10

0.15

0.20

0.25

0.30

0.35

0.40

M
ea

n
ab

so
lu

te
 e

rro
r

100 101
1

2

3

4

5

6

7

8

M
ea

n
re

la
tiv

e
er

ro
r (

%
)

gc
gm
gf

lc
lm
lf

100 101

CPU time (s)

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

RM
SE

100 101

CPU time (s)

0.2

0.4

0.6

0.8

1.0

1.2

1.4

RR
M

SE
 (%

)

FSM

Shortest-Path Method

Results for the SPM are shown next. In the legend, the number next to the model label is the number of secondary
nodes employed. Increasing this number obviously has an impact on both accuracy and computation time. Using 5
secondary nodes appears to be a good compromise.

4.1. 3D Rectilinear Grids 13

ttcrpy, Release 1.3.4

10 1 100 101 102 103 104
0.0

0.1

0.2

0.3

0.4

0.5

M
ea

n
ab

so
lu

te
 e

rro
r

10 1 100 101 102 103 104
0

1

2

3

4

M
ea

n
re

la
tiv

e
er

ro
r (

%
)

gc-01
gc-02
gc-05
gc-10
gc-15
gm-01
gm-02
gm-05
gm-10
gm-15
gf-01
gf-02
gf-05
gf-10
gf-15

lc-01
lc-02
lc-05
lc-10
lc-15
lm-01
lm-02
lm-05
lm-10
lm-15
lf-01
lf-02
lf-05
lf-10
lf-15

10 1 100 101 102 103 104

CPU time (s)

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

RM
SE

10 1 100 101 102 103 104

CPU time (s)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
RR

M
SE

 (%
)

SPM

Dynamic Shortest-Path Method

Results for the DSPM are shown next, in a rather busy figure. In the legend, the first number next to the model label is
the number of secondary nodes, the second number is the number of tertiary nodes, and the last number is the radius
of the sphere containing the tertiary nodes around the source.

14 Chapter 4. Performance

ttcrpy, Release 1.3.4

10 1 100 101 102 103

0.1

0.2

0.3

0.4

M
ea

n
ab

so
lu

te
 e

rro
r

10 1 100 101 102 103

0.5

1.0

1.5

2.0

2.5

3.0

3.5

M
ea

n
re

la
tiv

e
er

ro
r (

%
)

gc-1_2_1
gc-1_2_2
gc-1_2_3
gc-1_2_4
gc-1_3_1
gc-1_3_2
gc-1_3_3
gc-1_3_4
gc-1_4_1
gc-1_4_2
gc-1_4_3
gc-1_4_4
gc-2_2_1
gc-2_2_2
gc-2_2_3
gc-2_2_4
gc-2_3_1
gc-2_3_2
gc-2_3_3
gc-2_3_4
gc-2_4_1
gc-2_4_2
gc-2_4_3
gc-2_4_4
gc-5_2_1
gc-5_2_2
gc-5_2_3
gc-5_2_4
gc-5_3_1
gc-5_3_2
gc-5_3_3
gc-5_3_4
gc-5_4_1
gc-5_4_2
gc-5_4_3
gc-5_4_4

gm-1_2_1
gm-1_2_2
gm-1_2_3
gm-1_2_4
gm-1_3_1
gm-1_3_2
gm-1_3_3
gm-1_3_4
gm-1_4_1
gm-1_4_2
gm-1_4_3
gm-1_4_4
gm-2_2_1
gm-2_2_2
gm-2_2_3
gm-2_2_4
gm-2_3_1
gm-2_3_2
gm-2_3_3
gm-2_3_4
gm-2_4_1
gm-2_4_2
gm-2_4_3
gm-2_4_4
gm-5_2_1
gm-5_2_2
gm-5_2_3
gm-5_2_4
gm-5_3_1
gm-5_3_2
gm-5_3_3
gm-5_3_4
gm-5_4_1
gm-5_4_2
gm-5_4_3
gm-5_4_4

gf-1_2_1
gf-1_2_2
gf-1_2_3
gf-1_2_4
gf-1_3_1
gf-1_3_2
gf-1_3_3
gf-1_3_4
gf-1_4_1
gf-1_4_2
gf-1_4_3
gf-1_4_4
gf-2_2_1
gf-2_2_2
gf-2_2_3
gf-2_2_4
gf-2_3_1
gf-2_3_2
gf-2_3_3
gf-2_3_4
gf-2_4_1
gf-2_4_2
gf-2_4_3
gf-2_4_4
gf-5_2_1
gf-5_2_2
gf-5_2_3
gf-5_2_4
gf-5_3_1
gf-5_3_2
gf-5_3_3
gf-5_3_4
gf-5_4_1
gf-5_4_2
gf-5_4_3
gf-5_4_4

lc-1_2_1
lc-1_2_2
lc-1_2_3
lc-1_2_4
lc-1_3_1
lc-1_3_2
lc-1_3_3
lc-1_3_4
lc-1_4_1
lc-1_4_2
lc-1_4_3
lc-1_4_4
lc-2_2_1
lc-2_2_2
lc-2_2_3
lc-2_2_4
lc-2_3_1
lc-2_3_2
lc-2_3_3
lc-2_3_4
lc-2_4_1
lc-2_4_2
lc-2_4_3
lc-2_4_4
lc-5_2_1
lc-5_2_2
lc-5_2_3
lc-5_2_4
lc-5_3_1
lc-5_3_2
lc-5_3_3
lc-5_3_4
lc-5_4_1
lc-5_4_2
lc-5_4_3
lc-5_4_4

lm-1_2_1
lm-1_2_2
lm-1_2_3
lm-1_2_4
lm-1_3_1
lm-1_3_2
lm-1_3_3
lm-1_3_4
lm-1_4_1
lm-1_4_2
lm-1_4_3
lm-1_4_4
lm-2_2_1
lm-2_2_2
lm-2_2_3
lm-2_2_4
lm-2_3_1
lm-2_3_2
lm-2_3_3
lm-2_3_4
lm-2_4_1
lm-2_4_2
lm-2_4_3
lm-2_4_4
lm-5_2_1
lm-5_2_2
lm-5_2_3
lm-5_2_4
lm-5_3_1
lm-5_3_2
lm-5_3_3
lm-5_3_4
lm-5_4_1
lm-5_4_2
lm-5_4_3
lm-5_4_4

lf-1_2_1
lf-1_2_2
lf-1_2_3
lf-1_2_4
lf-1_3_1
lf-1_3_2
lf-1_3_3
lf-1_3_4
lf-1_4_1
lf-1_4_2
lf-1_4_3
lf-1_4_4
lf-2_2_1
lf-2_2_2
lf-2_2_3
lf-2_2_4
lf-2_3_1
lf-2_3_2
lf-2_3_3
lf-2_3_4
lf-2_4_1
lf-2_4_2
lf-2_4_3
lf-2_4_4
lf-5_2_1
lf-5_2_2
lf-5_2_3
lf-5_2_4
lf-5_3_1
lf-5_3_2
lf-5_3_3
lf-5_3_4
lf-5_4_1
lf-5_4_2
lf-5_4_3
lf-5_4_4

10 1 100 101 102 103

CPU time (s)

0.025

0.050

0.075

0.100

0.125

0.150

0.175

RM
SE

10 1 100 101 102 103

CPU time (s)

0.2

0.4

0.6

0.8

1.0

1.2

1.4

RR
M

SE
 (%

)

DSPM

Results by model

The next set of figures contains the accuracy achieved with the three methods for each model. In all cases, the lowest
errors are obtained with the SPM with 15 secondary nodes (at the cost of very high computation time). For the gradient
model, the FSM is very competitive for the medium and fine models. Otherwise, the DSPM often appears to offer a
good compromise.

4.1. 3D Rectilinear Grids 15

ttcrpy, Release 1.3.4

10 1 100 101 102

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

M
ea

n
ab

so
lu

te
 e

rro
r

10 1 100 101 102
0

2

4

6

8

M
ea

n
re

la
tiv

e
er

ro
r (

%
)

fsm
spm-01
spm-02
spm-05
spm-10
spm-15
dspm-1_2_1
dspm-1_2_2
dspm-1_2_3
dspm-1_2_4
dspm-1_3_1
dspm-1_3_2
dspm-1_3_3
dspm-1_3_4
dspm-1_4_1
dspm-1_4_2
dspm-1_4_3
dspm-1_4_4
dspm-2_2_1
dspm-2_2_2
dspm-2_2_3

dspm-2_2_4
dspm-2_3_1
dspm-2_3_2
dspm-2_3_3
dspm-2_3_4
dspm-2_4_1
dspm-2_4_2
dspm-2_4_3
dspm-2_4_4
dspm-5_2_1
dspm-5_2_2
dspm-5_2_3
dspm-5_2_4
dspm-5_3_1
dspm-5_3_2
dspm-5_3_3
dspm-5_3_4
dspm-5_4_1
dspm-5_4_2
dspm-5_4_3
dspm-5_4_4

10 1 100 101 102

CPU time (s)

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

RM
SE

10 1 100 101 102

CPU time (s)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
RR

M
SE

 (%
)

LC

100 101 102 103

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

M
ea

n
ab

so
lu

te
 e

rro
r

100 101 102 103
0

1

2

3

4

M
ea

n
re

la
tiv

e
er

ro
r (

%
)

fsm
spm-01
spm-02
spm-05
spm-10
spm-15
dspm-1_2_1
dspm-1_2_2
dspm-1_2_3
dspm-1_2_4
dspm-1_3_1
dspm-1_3_2
dspm-1_3_3
dspm-1_3_4
dspm-1_4_1
dspm-1_4_2
dspm-1_4_3
dspm-1_4_4
dspm-2_2_1
dspm-2_2_2
dspm-2_2_3

dspm-2_2_4
dspm-2_3_1
dspm-2_3_2
dspm-2_3_3
dspm-2_3_4
dspm-2_4_1
dspm-2_4_2
dspm-2_4_3
dspm-2_4_4
dspm-5_2_1
dspm-5_2_2
dspm-5_2_3
dspm-5_2_4
dspm-5_3_1
dspm-5_3_2
dspm-5_3_3
dspm-5_3_4
dspm-5_4_1
dspm-5_4_2
dspm-5_4_3
dspm-5_4_4

100 101 102 103

CPU time (s)

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

RM
SE

100 101 102 103

CPU time (s)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

RR
M

SE
 (%

)

LM

16 Chapter 4. Performance

ttcrpy, Release 1.3.4

101 102 103 104

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

M
ea

n
ab

so
lu

te
 e

rro
r

101 102 103 104
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

M
ea

n
re

la
tiv

e
er

ro
r (

%
)

fsm
spm-01
spm-02
spm-05
spm-10
spm-15
dspm-1_2_1
dspm-1_2_2
dspm-1_2_3
dspm-1_2_4
dspm-1_3_1
dspm-1_3_2
dspm-1_3_3
dspm-1_3_4
dspm-1_4_1
dspm-1_4_2
dspm-1_4_3
dspm-1_4_4
dspm-2_2_1
dspm-2_2_2
dspm-2_2_3

dspm-2_2_4
dspm-2_3_1
dspm-2_3_2
dspm-2_3_3
dspm-2_3_4
dspm-2_4_1
dspm-2_4_2
dspm-2_4_3
dspm-2_4_4
dspm-5_2_1
dspm-5_2_2
dspm-5_2_3
dspm-5_2_4
dspm-5_3_1
dspm-5_3_2
dspm-5_3_3
dspm-5_3_4
dspm-5_4_1
dspm-5_4_2
dspm-5_4_3
dspm-5_4_4

101 102 103 104

CPU time (s)

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

RM
SE

101 102 103 104

CPU time (s)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
RR

M
SE

 (%
)

LF

10 1 100 101 102

0.1

0.2

0.3

0.4

0.5

M
ea

n
ab

so
lu

te
 e

rro
r

10 1 100 101 102
0

2

4

6

8

M
ea

n
re

la
tiv

e
er

ro
r (

%
)

fsm
spm-01
spm-02
spm-05
spm-10
spm-15
dspm-1_2_1
dspm-1_2_2
dspm-1_2_3
dspm-1_2_4
dspm-1_3_1
dspm-1_3_2
dspm-1_3_3
dspm-1_3_4
dspm-1_4_1
dspm-1_4_2
dspm-1_4_3
dspm-1_4_4
dspm-2_2_1
dspm-2_2_2
dspm-2_2_3

dspm-2_2_4
dspm-2_3_1
dspm-2_3_2
dspm-2_3_3
dspm-2_3_4
dspm-2_4_1
dspm-2_4_2
dspm-2_4_3
dspm-2_4_4
dspm-5_2_1
dspm-5_2_2
dspm-5_2_3
dspm-5_2_4
dspm-5_3_1
dspm-5_3_2
dspm-5_3_3
dspm-5_3_4
dspm-5_4_1
dspm-5_4_2
dspm-5_4_3
dspm-5_4_4

10 1 100 101 102

CPU time (s)

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

RM
SE

10 1 100 101 102

CPU time (s)

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

RR
M

SE
 (%

)

GC

4.1. 3D Rectilinear Grids 17

ttcrpy, Release 1.3.4

100 101 102 103
0.0

0.1

0.2

0.3

0.4

0.5

M
ea

n
ab

so
lu

te
 e

rro
r

100 101 102 103
0

1

2

3

4

M
ea

n
re

la
tiv

e
er

ro
r (

%
)

fsm
spm-01
spm-02
spm-05
spm-10
spm-15
dspm-1_2_1
dspm-1_2_2
dspm-1_2_3
dspm-1_2_4
dspm-1_3_1
dspm-1_3_2
dspm-1_3_3
dspm-1_3_4
dspm-1_4_1
dspm-1_4_2
dspm-1_4_3
dspm-1_4_4
dspm-2_2_1
dspm-2_2_2
dspm-2_2_3

dspm-2_2_4
dspm-2_3_1
dspm-2_3_2
dspm-2_3_3
dspm-2_3_4
dspm-2_4_1
dspm-2_4_2
dspm-2_4_3
dspm-2_4_4
dspm-5_2_1
dspm-5_2_2
dspm-5_2_3
dspm-5_2_4
dspm-5_3_1
dspm-5_3_2
dspm-5_3_3
dspm-5_3_4
dspm-5_4_1
dspm-5_4_2
dspm-5_4_3
dspm-5_4_4

100 101 102 103

CPU time (s)

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

RM
SE

100 101 102 103

CPU time (s)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
RR

M
SE

 (%
)

GM

101 102 103 104
0.0

0.1

0.2

0.3

0.4

M
ea

n
ab

so
lu

te
 e

rro
r

101 102 103 104
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

M
ea

n
re

la
tiv

e
er

ro
r (

%
)

fsm
spm-01
spm-02
spm-05
spm-10
spm-15
dspm-1_2_1
dspm-1_2_2
dspm-1_2_3
dspm-1_2_4
dspm-1_3_1
dspm-1_3_2
dspm-1_3_3
dspm-1_3_4
dspm-1_4_1
dspm-1_4_2
dspm-1_4_3
dspm-1_4_4
dspm-2_2_1
dspm-2_2_2
dspm-2_2_3

dspm-2_2_4
dspm-2_3_1
dspm-2_3_2
dspm-2_3_3
dspm-2_3_4
dspm-2_4_1
dspm-2_4_2
dspm-2_4_3
dspm-2_4_4
dspm-5_2_1
dspm-5_2_2
dspm-5_2_3
dspm-5_2_4
dspm-5_3_1
dspm-5_3_2
dspm-5_3_3
dspm-5_3_4
dspm-5_4_1
dspm-5_4_2
dspm-5_4_3
dspm-5_4_4

101 102 103 104

CPU time (s)

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

RM
SE

101 102 103 104

CPU time (s)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

RR
M

SE
 (%

)

GF

18 Chapter 4. Performance

CHAPTER

FIVE

DOCUMENTATION FOR THE PYTHON CODE

The original modules of ttcrpy are cgrid2d, cgrid3d, cmesh2d and cmesh3d. These modules are deprecated in favor of
rgrid and an upcoming tmesh modules.

5.1 Module rgrid

Raytracing on rectilinear grids

This module contains two classes to perform traveltime computation and raytracing on rectilinear grids:

• Grid2d for 2D media

• Grid3d for 3D media

Three algorithms are implemented

• the Shortest-Path Method

• the Fast-Sweeping Method

• the Dynamic Shortest-Path Method

Slowness model can be defined in two ways:

1) slowness constant within the voxels of the grid (the default)

2) slowness defined at nodes of the grid

This code is part of ttcr (https://github.com/groupeLIAMG/ttcr)

class ttcrpy.rgrid.Grid2d

class to perform raytracing with 2D rectilinear grids

x

node coordinates along x

Type
np.ndarray

z

node coordinates along z

Type
np.ndarray

19

https://github.com/groupeLIAMG/ttcr

ttcrpy, Release 1.3.4

dx

node separation along x

Type
float

dz

node separation along z

Type
float

shape

number of parameters along each dimension

Type
(int, int)

nparams

total number of parameters for grid

Type
int

n_threads

number of threads for raytracing

Type
int

Constructor

Grid2d(x, z, n_threads=1, cell_slowness=1, method='SPM', aniso='iso', eps=1.e-15, maxit=20, weno=1,
rotated_template=0, nsnx=10, nsnz=10, n_secondary=3, n_tertiary=3, radius_factor_tertiary=3.0,
tt_from_rp=0)→ Grid2d

Parameters

• x (np.ndarray) – node coordinates along x

• z (np.ndarray) – node coordinates along z

• n_threads (int) – number of threads for raytracing (default is 1)

• cell_slowness (bool) – slowness defined for cells (True) or nodes (False) (default is 1)

• method (string) –

raytracing method (default is SPM)

– ’FSM’ : fast marching method

– ’SPM’ : shortest path method

– ’DSPM’ : dynamic shortest path method

• aniso (string) –

type of anisotropy (implemented only for the SPM method)

– ’iso’ : isotropic medium

– ’elliptical’ : elliptical anisotropy

– ’tilted_elliptical’ : tilted elliptical anisotropy

20 Chapter 5. Documentation for the python code

ttcrpy, Release 1.3.4

– ’vti_psv’ : vertical transverse isotropy, P and SV waves

– ’vti_sh’ : vertical transverse isotropy, SH waves

– ’weakly_anelliptical’ : Weakly-Anelliptical formulation of B. Rommel

• eps (double) – convergence criterion (FSM) (default is 1e-15)

• maxit (int) – max number of sweeping iterations (FSM) (default is 20)

• weno (bool) – use 3rd order weighted essentially non-oscillatory operator (FSM) (default is
True)

• rotated_template (bool) – use rotated templates (FSM)

• nsnx (int) – number of secondary nodes in x (SPM) (default is 10)

• nsnz (int) – number of secondary nodes in z (SPM) (default is 10)

• n_secondary (int) – number of secondary nodes (DSPM) (default is 3)

• n_tertiary (int) – number of tertiary nodes (DSPM) (default is 3)

• radius_factor_tertiary (double) – multiplication factor used to compute radius of
sphere around source that includes tertiary nodes (DSPM). The radius is the average edge
length multiplied by this factor (default is 3)

• tt_from_rp (bool) – compute traveltime using raypaths (available for FSM and DSPM
only) (default is False)

Notes

For raytracing in anisotropic media, the convention for inputting slowness depends on the model. For elliptical
anisotropy, the method set_slowness is used to input horizontal slowness, while for weakly anelliptical anisotropy,
the method is used to input vertical slowness.

compute_D(coord)
Return matrix of interpolation weights for velocity data points constraint

Parameters
coord (np.ndarray, shape (npts, 2)) – coordinates of data points

Returns
D – Matrix of interpolation weights

Return type
scipy csr_matrix, shape (npts, nparams)

Note: In the current implementation, no check is made to see if the coordinates are on a node, edge, or
corner.

compute_K(order=1)
Compute smoothing matrices

Parameters
order (int) – order of smoothing operator, accept 1 or 2 (1 by default)

Returns
Kx, Kz – matrices for derivatives along x & z

5.1. Module rgrid 21

ttcrpy, Release 1.3.4

Return type
tuple of csr_matrix

static data_kernel_straight_rays(Tx, Rx, grx, grz, aniso=False)→ L
Raytracing with straight rays in 2D

Parameters

• Tx (np.ndarray) –

source coordinates, nTx by 2

– 1st column contains X coordinates,

– 2nd contains Z coordinates

• Rx (np.ndarray) –

receiver coordinates, nTx by 2

– 1st column contains X coordinates,

– 2nd contains Z coordinates

• grx (np.ndarray) – grid node coordinates along x

• grz (np.ndarray) – grid node coordinates along z

• aniso (bool) – compute L for elliptically anisotropic medium (True) or isotropic medium
(False)

Returns
L – data kernel matrix (tt = L*slowness)

Return type
scipy csr_matrix

Note: Tx and Rx should contain the same number of rows, each row corresponding to a source-receiver
pair

dx

node separation along x

Type
float

dz

node separation along x

Type
float

get_grid_traveltimes(thread_no=0)
Obtain traveltimes computed at primary grid nodes

Parameters
thread_no (int) – thread used to computed traveltimes (default is 0)

Returns
tt

Return type
np ndarray, shape (nx, nz)

22 Chapter 5. Documentation for the python code

ttcrpy, Release 1.3.4

get_number_of_cells()

Returns
number of cells in grid

Return type
int

get_number_of_nodes()

Returns
number of nodes in grid

Return type
int

get_s0(hypo, slowness=None)
Return slowness at source points

Parameters

• hypo (np.ndarray with 5 columns) –

hypo holds source information, i.e.

– 1st column is event ID number

– 2nd column is origin time

– 3rd column is source easting (X)

– 4th column is source elevation (Z)

• slowness (np ndarray, shape (nx, nz) (optional)) – slowness at grid
nodes or cells (depending on cell_slowness) slowness may also have been flattened
(with default ‘C’ order)

Returns
s0 – slowness at source points

Return type
np.ndarray

get_slowness()

Returns slowness of grid

Returns
slowness

Return type
np ndarray, shape (nx, nz)

is_outside(pts)
Check if points are outside grid

Parameters
pts (np ndarray, shape(npts, 3)) – coordinates of points to check

Returns
True if at least one point outside grid

Return type
bool

5.1. Module rgrid 23

ttcrpy, Release 1.3.4

n_threads

number of threads for raytracing

Type
int

nparams

total number of parameters for grid

Type
int

raytrace(source, rcv, slowness=None, xi=None, theta=None, Vp0=None, Vs0=None, delta=None,
epsilon=None, gamma=None, thread_no=None, aggregate_src=False, compute_L=False,
return_rays=False)→ tt, rays, L

Perform raytracing

Parameters

• source (2D np.ndarray with 2 or 3 columns) – see notes below

• rcv (2D np.ndarray with 2 columns) – Columns correspond to x, y and z coor-
dinates

• slowness (np ndarray, shape (nx, nz) (None by default)) – slowness at
grid nodes or cells (depending on cell_slowness) slowness may also have been flat-
tened (with default ‘C’ order) if None, slowness must have been assigned previously

• xi (np ndarray, shape (nx, nz) (None by default)) – xi at grid cells (only
for SPM & cell_slowness=True) xi may also have been flattened (with default ‘C’
order) if None, xi must have been assigned previously

• theta (np ndarray, shape (nx, nz) (None by default)) – theta at grid
cells (only for SPM & cell_slowness=True) theta may also have been flattened (with
default ‘C’ order) if None, theta must have been assigned previously

• Vp0 (np ndarray, shape (nx, nz) (None by default)) – Vp0 at grid cells
(only for SPM & cell_slowness=True) Vp0 may also have been flattened (with default
‘C’ order) if None, Vp0 must have been assigned previously

• Vs0 (np ndarray, shape (nx, nz) (None by default)) – Vs0 at grid cells
(only for SPM & cell_slowness=True) Vs0 may also have been flattened (with default
‘C’ order) if None, Vs0 must have been assigned previously

• delta (np ndarray, shape (nx, nz) (None by default)) – delta at grid
cells (only for SPM & cell_slowness=True) delta may also have been flattened (with
default ‘C’ order) if None, delta must have been assigned previously

• epsilon (np ndarray, shape (nx, nz) (None by default)) – epsilon at
grid cells (only for SPM & cell_slowness=True) epsilon may also have been flattened
(with default ‘C’ order) if None, epsilon must have been assigned previously

• gamma (np ndarray, shape (nx, nz) (None by default)) – gamma at grid
cells (only for SPM & cell_slowness=True) gamma may also have been flattened (with
default ‘C’ order) if None, gamma must have been assigned previously

• thread_no (int (None by default)) – Perform calculations in thread number
“thread_no” if None, attempt to run in parallel if warranted by number of sources and
value of n_threads in constructor

• aggregate_src (bool (False by default)) – if True, all source coordinates be-
long to a single event

24 Chapter 5. Documentation for the python code

ttcrpy, Release 1.3.4

• compute_L (bool (False by default)) – Compute matrices of partial derivative
of travel time w/r to slowness

• return_rays (bool (False by default)) – Return raypaths

Returns

• tt (np.ndarray) – travel times for the appropriate source-rcv (see Notes below)

• rays (list of np.ndarray) – Coordinates of segments forming raypaths (if re-
turn_rays is True)

• L (scipy csr_matrix) – Matrix of partial derivative of travel time w/r to slowness

Notes

If source has 2 columns:

• Columns correspond to x and z coordinates

• Origin time (t0) is 0 for all points

If source has 3 columns:

• 1st column corresponds to origin times

• 2nd & 3rd columns correspond to x and z coordinates

source and rcv can contain the same number of rows, each row corresponding to a source-receiver pair, or
the number of rows may differ if aggregate_src is True or if all rows in source are identical.

set_Vp0(v)
Assign vertical Vp to grid (VTI medium)

Parameters
v (np ndarray, shape (nx, nz)) – v may also have been flattened (with default ‘C’
order)

set_Vs0(v)
Assign vertical Vs to grid (VTI medium)

Parameters
v (np ndarray, shape (nx, nz)) – v may also have been flattened (with default ‘C’
order)

set_delta(d)
Assign Thomsen delta parameter to grid (VTI medium, P-SV waves)

Parameters
d (np ndarray, shape (nx, nz)) – d may also have been flattened (with default ‘C’
order)

set_epsilon(e)
Assign Thomsen epsilon parameter to grid (VTI medium, P-SV waves)

Parameters
e (np ndarray, shape (nx, nz)) – e may also have been flattened (with default ‘C’
order)

set_gamma(g)
Assign Thomsen gamma parameter to grid (VTI medium, SH waves)

5.1. Module rgrid 25

ttcrpy, Release 1.3.4

Parameters
g (np ndarray, shape (nx, nz)) – g may also have been flattened (with default ‘C’
order)

set_s2(g)
Assign weakly anelliptical parameter s2

Parameters
g (np ndarray, shape (nx, nz)) – g may also have been flattened (with default ‘C’
order)

set_s4(g)
Assign weakly anelliptical parameter s4

Parameters
g (np ndarray, shape (nx, nz)) – g may also have been flattened (with default ‘C’
order)

set_slowness(slowness)
Assign slowness to grid

Parameters
slowness (np ndarray, shape (nx, nz)) – slowness may also have been flattened
(with default ‘C’ order)

set_tilt_angle(theta)
Assign tilted elliptical anisotropy angle to grid

Parameters
theta (np ndarray, shape (nx, nz)) – theta may also have been flattened (with de-
fault ‘C’ order)

set_traveltime_from_raypath(ttrp)
Set option to compute traveltime using raypath

Parameters
ttrp (bool) – option value

set_use_thread_pool(use_thread_pool)
Set option to use thread pool instead of parallel loop

Parameters
use_thread_pool (bool) – option value

set_velocity(velocity)
Assign velocity to grid

Parameters
velocity (np ndarray, shape (nx, nz)) – velocity may also have been flattened
(with default ‘C’ order)

set_xi(xi)
Assign elliptical anisotropy ratio to grid

Parameters
xi (np ndarray, shape (nx, nz)) – xi may also have been flattened (with default ‘C’
order)

26 Chapter 5. Documentation for the python code

ttcrpy, Release 1.3.4

shape

number of parameters along each dimension

Type
list of int

to_vtk(fields, filename)
Save grid variables and/or raypaths to VTK format

Parameters

• fields (dict) – dict of variables to save to file. Variables should be np.ndarray of
size equal to either the number of nodes of the number of cells of the grid, or a list of
raypath coordinates.

• filename (str) – Name of file without extension for saving (extension vtr will be
added). Raypaths are saved in separate files, and filename will be appended by the
dict key and have a vtp extension.

Notes

VTK files can be visualized with Paraview (https://www.paraview.org)

x

node coordinates along x

Type
np.ndarray

z

node coordinates along z

Type
np.ndarray

class ttcrpy.rgrid.Grid3d

class to perform raytracing with 3D rectilinear grids

x

node coordinates along x

Type
np.ndarray

y

node coordinates along y

Type
np.ndarray

z

node coordinates along z

Type
np.ndarray

dx

node separation along x

5.1. Module rgrid 27

https://www.paraview.org

ttcrpy, Release 1.3.4

Type
float

dy

node separation along y

Type
float

dz

node separation along z

Type
float

shape

number of parameters along each dimension

Type
(int, int, int)

nparams

total number of parameters for grid

Type
int

n_threads

number of threads for raytracing

Type
int

Constructor

Grid3d(x, y, z, n_threads=1, cell_slowness=1, method='FSM', tt_from_rp=1, interp_vel=0, eps=1.e-15,
maxit=20, weno=1, nsnx=5, nsny=5, nsnz=5, n_secondary=2, n_tertiary=2,
radius_factor_tertiary=3.0, translate_grid=False)→ Grid3d

Parameters

• x (np.ndarray) – node coordinates along x

• y (np.ndarray) – node coordinates along y

• z (np.ndarray) – node coordinates along z

• n_threads (int) – number of threads for raytracing (default is 1)

• cell_slowness (bool) – slowness defined for cells (True) or nodes (False) (default
is 1)

• method (string) –

raytracing method (default is FSM)

– ’FSM’ : fast marching method

– ’SPM’ : shortest path method

– ’DSPM’ : dynamic shortest path

• tt_from_rp (bool) – compute traveltimes from raypaths (FSM or DSPM only) (de-
fault is 1)

28 Chapter 5. Documentation for the python code

ttcrpy, Release 1.3.4

• interp_vel (bool) – interpolate velocity instead of slowness at nodes (for
cell_slowness == False or FSM) (defauls is False)

• eps (double) – convergence criterion (FSM) (default is 1e-15)

• maxit (int) – max number of sweeping iterations (FSM) (default is 20)

• weno (bool) – use 3rd order weighted essentially non-oscillatory operator (FSM) (de-
fault is True)

• nsnx (int) – number of secondary nodes in x (SPM) (default is 5)

• nsny (int) – number of secondary nodes in y (SPM) (default is 5)

• nsnz (int) – number of secondary nodes in z (SPM) (default is 5)

• n_secondary (int) – number of secondary nodes (DSPM) (default is 2)

• n_tertiary (int) – number of tertiary nodes (DSPM) (default is 2)

• radius_factor_tertiary (double) – multiplication factor used to compute radius
of sphere around source that includes tertiary nodes (DSPM). The radius is the average
edge length multiplied by this factor (default is 3)

• translate_grid (bool) – Translate the grid such that origin is (0, 0, 0) to perform
computations, which may increase accuracy when large values, e.g. UTM coordinates,
are used. When raytracing, src and rcv should be given in the original system, and
output raypath coordinates are also given in the original system (default if False)

static builder(filename, n_threads=1, method='FSM', tt_from_rp=1, interp_vel=0, eps=1.e-15,
maxit=20, weno=1, nsnx=5, nsny=5, nsnz=5, n_secondary=2, n_tertiary=2,
radius_factor_tertiary=3.0, translate_grid=0)

Build instance of Grid3d from VTK file

Parameters

• filename (str) – Name of file holding a vtkRectilinearGrid. The grid must have
point or cell attribute named either ‘Slowness’, ‘slowness’, ‘Velocity’, ‘velocity’, or
‘P-wave velocity’

• Constructor (Other parameters are defined in) –

Returns
grid – grid instance

Return type
Grid3d

compute_D(coord)
Return matrix of interpolation weights for velocity data points constraint

Parameters
coord (np.ndarray, shape (npts, 3)) – coordinates of data points

Returns
D – Matrix of interpolation weights

Return type
scipy csr_matrix, shape (npts, nparams)

Note: In the current implementation, no check is made to see if the coordinates are on a node, edge, face,
or corner.

5.1. Module rgrid 29

ttcrpy, Release 1.3.4

compute_K()

Compute smoothing matrices (2nd order derivative)

Returns
Kx, Ky, Kz – matrices for derivatives along x, y, & z

Return type
tuple of csr_matrix

static data_kernel_straight_rays(Tx, Rx, grx, gry, grz, centers) -> L, (xc, yc, zc)
Raytracing with straight rays in 3D

Parameters

• Tx (np.ndarray) –

source coordinates, nTx by 3

– 1st column contains X coordinates,

– 2nd contains Y coordinates

– 3rd contains Z coordinates

• Rx (np.ndarray) –

receiver coordinates, nTx by 3

– 1st column contains X coordinates,

– 2nd contains Y coordinates

– 3rd contains Z coordinates

• grx (np.ndarray) – grid node coordinates along x

• gry (np.ndarray) – grid node coordinates along y

• grz (np.ndarray) – grid node coordinates along z

• centers (bool) – return coordinates of center of cells (False by default)

Returns

• L (scipy csr_matrix) – data kernel matrix (tt = L*slowness)

• (xc, yc, zc) (tuple of np.ndarray) – vectors of coordinates of center of cells

Note: Tx and Rx should contain the same number of rows, each row corresponding to a source-receiver
pair

dx

node separation along x

Type
float

dy

node separation along y

Type
float

30 Chapter 5. Documentation for the python code

ttcrpy, Release 1.3.4

dz

node separation along z

Type
float

get_grid_traveltimes(thread_no=0)
Obtain traveltimes computed at primary grid nodes

Parameters
thread_no (int) – thread used to computed traveltimes (default is 0)

Returns
tt – traveltimes

Return type
np ndarray, shape (nx, ny, nz)

get_number_of_cells()

Returns
number of cells in grid

Return type
int

get_number_of_nodes()

Returns
number of nodes in grid

Return type
int

get_s0(hypo, slowness=None)
Return slowness at source points

Parameters

• hypo (np.ndarray with 5 columns) –

hypo holds source information, i.e.

– 1st column is event ID number

– 2nd column is origin time

– 3rd column is source easting

– 4th column is source northing

– 5th column is source elevation

• slowness (np ndarray, shape (nx, ny, nz) (optional)) – slowness at grid
nodes or cells (depending on cell_slowness) slowness may also have been flattened
(with default ‘C’ order)

Returns
s0 – slowness at source points

Return type
np.ndarray

5.1. Module rgrid 31

ttcrpy, Release 1.3.4

get_slowness()

Returns slowness of grid

Returns
slowness

Return type
np ndarray, shape (nx, ny, nz)

ind(i, j, k)
Return node index

Parameters

• i (int) – index of node along x

• j (int) – index of node along y

• k (int) – index of node along z

Returns
node index for a “flattened” grid

Return type
int

indc(i, j, k)
return cell index

Parameters

• i (int) – index of cell along x

• j (int) – index of cell along y

• k (int) – index of cell along z

Returns
cell index for a “flattened” grid

Return type
int

is_outside(pts)
Check if points are outside grid

Parameters
pts (np ndarray, shape(npts, 3)) – coordinates of points to check

Returns
True if at least one point outside grid

Return type
bool

n_threads

number of threads for raytracing

Type
int

nparams

total number of parameters for grid

32 Chapter 5. Documentation for the python code

ttcrpy, Release 1.3.4

Type
int

raytrace(source, rcv, slowness=None, thread_no=None, aggregate_src=False, compute_L=False,
compute_M=False, return_rays=False)

raytrace(source, rcv, slowness=None, thread_no=None,
aggregate_src=False, compute_L=False, compute_M=False, return_rays=False) -> tt, rays, M, L

Perform raytracing

Parameters

• source (2D np.ndarray with 3, 4 or 5 columns) – see notes below

• rcv (2D np.ndarray with 3 columns) – Columns correspond to x, y and z coor-
dinates

• slowness (np ndarray, shape (nx, ny, nz) (None by default)) – slow-
ness at grid nodes or cells (depending on cell_slowness) slowness may also have been
flattened (with default ‘C’ order) if None, slowness must have been assigned previ-
ously

• thread_no (int (None by default)) – Perform calculations in thread number
“thread_no” if None, attempt to run in parallel if warranted by number of sources and
value of n_threads in constructor

• aggregate_src (bool (False by default)) – if True, all source coordinates be-
long to a single event

• compute_L (bool (False by default)) –

Compute matrices of partial derivative of travel time w/r to slowness
(implemeted for the SPM & DSPM with slowness

defined at cells).

• compute_M (bool (False by default)) – Compute matrices of partial derivative
of travel time w/r to velocity Note : compute_M and compute_L are mutually exclusive

• return_rays (bool (False by default)) – Return raypaths

Returns

• tt (np.ndarray) – travel times for the appropriate source-rcv (see Notes below)

• rays (list of np.ndarray) – Coordinates of segments forming raypaths (if re-
turn_rays is True)

• M (list of csr_matrix) – matrices of partial derivative of travel time w/r to velocity.
the number of matrices is equal to the number of sources

• L (scipy csr_matrix) – Matrix of partial derivative of travel time w/r to slowness. if
input argument source has 5 columns, L is a list of matrices and the number of matrices
is equal to the number of sources otherwise, L is a single csr_matrix

Notes

If source has 3 columns:

• Columns correspond to x, y and z coordinates

• Origin time (t0) is 0 for all points

If source has 4 columns:

5.1. Module rgrid 33

ttcrpy, Release 1.3.4

• 1st column corresponds to origin times

• 2nd, 3rd & 4th columns correspond to x, y and z coordinates

If source has 5 columns:

• 1st column corresponds to event ID

• 2nd column corresponds to origin times

• 3rd, 4th & 5th columns correspond to x, y and z coordinates

For the latter case (5 columns), source and rcv should contain the same number of rows, each row corre-
sponding to a source-receiver pair. For the 2 other cases, source and rcv can contain the same number of
rows, each row corresponding to a source-receiver pair, or the number of rows may differ if aggregate_src
is True or if all rows in source are identical.

set_slowness(slowness)
Assign slowness to grid

Parameters
slowness (np ndarray, shape (nx, ny, nz)) – slowness may also have been flat-
tened (with default ‘C’ order)

set_traveltime_from_raypath(ttrp)
Set option to compute traveltime using raypath

Parameters
ttrp (bool) – option value

set_use_thread_pool(use_thread_pool)
Set option to use thread pool instead of parallel loop

Parameters
use_thread_pool (bool) – option value

set_velocity(velocity)
Assign velocity to grid

Parameters
velocity (np ndarray, shape (nx, ny, nz)) – velocity may also have been flat-
tened (with default ‘C’ order)

shape

number of parameters along each dimension

Type
list of int

to_vtk(fields, filename)
Save grid variables and/or raypaths to VTK format

Parameters

• fields (dict) – dict of variables to save to file. Variables should be np.ndarray of
size equal to either the number of nodes of the number of cells of the grid, or a list of
raypath coordinates.

• filename (str) – Name of file without extension for saving (extension vtr will be
added). Raypaths are saved in separate files, and filename will be appended by the
dict key and have a vtp extension.

34 Chapter 5. Documentation for the python code

ttcrpy, Release 1.3.4

Notes

VTK files can be visualized with Paraview (https://www.paraview.org)

x

node coordinates along x

Type
np.ndarray

y

node coordinates along y

Type
np.ndarray

z

node coordinates along z

Type
np.ndarray

ttcrpy.rgrid.set_verbose(v)
Set verbosity level for C++ code

Parameters
v (int) – verbosity level

5.2 Module tmesh

Raytracing on unstructured triangular and tetrahedral meshes

This module contains two classes to perform traveltime computation and raytracing on unstructured meshes:

• Mesh2d for 2D media

• Mesh3d for 3D media

Three algorithms are implemented

• the Shortest-Path Method

• the Fast-Sweeping Method

• the Dynamic Shortest-Path Method

Slowness model can be defined in two ways:

1) slowness constant within the voxels of the mesh (the default)

2) slowness defined at nodes of the mesh

This code is part of ttcr (https://github.com/groupeLIAMG/ttcr)

class ttcrpy.tmesh.Mesh2d

class to perform raytracing with triangular meshes

5.2. Module tmesh 35

https://www.paraview.org
https://github.com/groupeLIAMG/ttcr

ttcrpy, Release 1.3.4

nparams

total number of parameters for grid

Type
int

n_threads

number of threads for raytracing

Type
int

Constructor

Mesh2d(nodes, triangles, n_threads=1, cell_slowness=1, method='FSM', aniso='iso', eps=1e-15, maxit=20,
process_obtuse=1, n_secondary=5, n_tertiary=2, radius_factor_tertiary=2, tt_from_rp=0)→
Mesh2d

Parameters

• nodes (np.ndarray, shape (nnodes, 2)) – node coordinates

• triangles (np.ndarray of int, shape (ntriangles, 3)) – indices of nodes
forming the triangles

• n_threads (int) – number of threads for raytracing (default is 1)

• cell_slowness (bool) – slowness defined for cells (True) or nodes (False) (default is 1)

• method (string) –

raytracing method (default is FSM)

– ’FSM’ : fast marching method

– ’SPM’ : shortest path method

– ’DSPM’ : dynamic shortest path

• aniso (string) –

type of anisotropy (implemented only for the SPM method)

– ’iso’ : isotropic medium

– ’elliptical’ : elliptical anisotropy

– ’tilted_elliptical’ : tilted elliptical anisotropy

– ’weakly_anelliptical’ : Weakly-Anelliptical formulation of B. Rommel

• eps (double) – convergence criterion (FSM) (default is 1e-15)

• maxit (int) – max number of sweeping iterations (FSM) (default is 20)

• process_obtuse (bool) – use method of Qian et al (2007) to improve accuracy for
triangles with obtuse angle (default is True)

• n_secondary (int) – number of secondary nodes (SPM) (default is 5)

• n_tertiary (int) – number of tertiary nodes (DSPM) (default is 2)

• radius_factor_tertiary (double) – multiplication factor used to compute radius of
sphere around source that includes tertiary nodes (DSPM). The radius is the average edge
length multiplied by this factor (default is 2)

36 Chapter 5. Documentation for the python code

ttcrpy, Release 1.3.4

• tt_from_rp (bool) – compute traveltimes using raypaths (default is False)

Notes

For raytracing in anisotropic media, the convention for inputting slowness depends on the model. For elliptical
anisotropy, the method set_slowness is used to input horizontal slowness, while for weakly anelliptical anisotropy,
the method is used to input vertical slowness.

static builder(filename, n_threads, cell_slowness, method, eps, maxit, process_obtuse, n_secondary,
n_tertiary, radius_factor_tertiary, tt_from_rp)

Build instance of Mesh2d from VTK file

Parameters

• filename (str) – Name of file holding a vtkUnstructuredGrid. The grid must have
point or cell attribute named either ‘Slowness’, ‘slowness’, ‘Velocity’, ‘velocity’, or
‘P-wave velocity’. All cells must be of type vtkTriangle

• Constructor (Other parameters are defined in) –

Returns
mesh – mesh instance

Return type
Mesh2d

get_grid_traveltimes(thread_no=0)
Obtain traveltimes computed at primary grid nodes

Parameters
thread_no (int) – thread used to computed traveltimes (default is 0)

Returns
tt – traveltimes

Return type
np ndarray, shape (nnodes,)

get_number_of_cells()

Returns
number of cells in grid

Return type
int

get_number_of_nodes()

Returns
number of nodes in grid

Return type
int

n_threads

number of threads for raytracing

Type
int

5.2. Module tmesh 37

ttcrpy, Release 1.3.4

nparams

total number of parameters for mesh

Type
int

raytrace(source, rcv, slowness=None, thread_no=None, aggregate_src=False, compute_L=False,
return_rays=False)→ tt, rays

Perform raytracing

Parameters

• source (2D np.ndarray with 2 or 3 columns) – see notes below

• rcv (2D np.ndarray with 2 columns) – Columns correspond to x and z coordi-
nates

• slowness (np ndarray, (None by default)) – slowness at grid nodes or cells
(depending on cell_slowness) if None, slowness must have been assigned previously

• thread_no (int (None by default)) – Perform calculations in thread number
“thread_no” if None, attempt to run in parallel if warranted by number of sources and
value of n_threads in constructor

• aggregate_src (bool (False by default)) – if True, all source coordinates be-
long to a single event

• compute_L (bool (False by default)) – Compute matrices of partial derivative
of travel time w/r to slowness

• return_rays (bool (False by default)) – Return raypaths

Returns

• tt (np.ndarray) – travel times for the appropriate source-rcv (see Notes below)

• rays (list of np.ndarray) – Coordinates of segments forming raypaths (if re-
turn_rays is True)

Notes

If source has 2 columns:

• Columns correspond to x and z coordinates

• Origin time (t0) is 0 for all points

If source has 3 columns:

• 1st column corresponds to origin times

• 2nd & 3rd columns correspond to x and z coordinates

source and rcv can contain the same number of rows, each row corresponding to a source-receiver pair, or
the number of rows may differ if aggregate_src is True or if all rows in source are identical.

set_s2(s2)
Assign energy-velocity parameter s2 to grid

Parameters
s2 (np ndarray, shape (nparams,)) –

38 Chapter 5. Documentation for the python code

ttcrpy, Release 1.3.4

set_s4(s4)
Assign energy-velocity parameter s4 to grid

Parameters
s4 (np ndarray, shape (nparams,)) –

set_slowness(slowness)
Assign slowness to grid

Parameters
slowness (np ndarray, shape (nparams,)) –

set_tilt_angle(theta)
Assign tilted elliptical anisotropy angle to grid

Parameters
theta (np ndarray, shape (nparams,)) –

set_traveltime_from_raypath(ttrp)
Set option to compute traveltime using raypath

Parameters
ttrp (bool) – option value

set_use_thread_pool(use_thread_pool)
Set option to use thread pool instead of parallel loop

Parameters
use_thread_pool (bool) – option value

set_velocity(velocity)
Assign velocity to grid

Parameters
velocity (np ndarray, shape (nparams,)) –

set_xi(xi)
Assign elliptical anisotropy ratio to grid

Parameters
xi (np ndarray, shape (nparams,)) –

to_vtk(fields, filename)
Save mesh variables and/or raypaths to VTK format

Parameters

• fields (dict) – dict of variables to save to file. Variables should be np.ndarray of
size equal to either the number of nodes of the number of cells of the mesh, or a list
of raypath coordinates.

• filename (str) – Name of file without extension for saving (extension vtu will be
added). Raypaths are saved in separate files, and filename will be appended by the
dict key and have a vtp extension.

Notes

VTK files can be visualized with Paraview (https://www.paraview.org)

5.2. Module tmesh 39

https://www.paraview.org

ttcrpy, Release 1.3.4

class ttcrpy.tmesh.Mesh3d

class to perform raytracing with tetrahedral meshes

nparams

total number of parameters for grid

Type
int

n_threads

number of threads for raytracing

Type
int

Constructor

Mesh3d(nodes, tetra, n_threads, cell_slowness, method, gradient_method, tt_from_rp, process_vel, eps, maxit,
min_dist, n_secondary, n_tertiary, radius_factor_tertiary, translate_grid=False)→ Mesh3d

Parameters

• nodes (np.ndarray, shape (nnodes, 3)) – node coordinates

• tetra (np.ndarray of int, shape (ntetra, 4)) – indices of nodes forming
the tetrahedra

• n_threads (int) – number of threads for raytracing (default is 1)

• cell_slowness (bool) – slowness defined for cells (True) or nodes (False) (default
is 1)

• method (string) –

raytracing method (default is FSM)

– ’FSM’ : fast marching method

– ’SPM’ : shortest path method

– ’DSPM’ : dynamic shortest path

• gradient_method (int) –

method to compute traveltime gradient (default is 1)

– 0 : least-squares first-order

– 1 : least-squares second-order

– 2 : Averaging-Based method

• tt_from_rp (bool) – compute traveltimes from raypaths (FSM or DSPM only) (de-
fault is 1)

• process_vel (bool) – process velocity instead of slowness at nodes when interpolat-
ing and computing matrix of partial derivative of traveltime w/r to model parameters
(interpolation: for cell_slowness == False or FSM) (defauls is False)

• eps (double) – convergence criterion (FSM) (default is 1e-15)

• maxit (int) – max number of sweeping iterations (FSM) (default is 20)

• min_dist (double) – tolerance for backward raytracing (default is 1e-5)

• n_secondary (int) – number of secondary nodes (SPM & DSPM) (default is 2)

40 Chapter 5. Documentation for the python code

ttcrpy, Release 1.3.4

• n_tertiary (int) – number of tertiary nodes (DSPM) (default is 2)

• radius_factor_tertiary (double) – multiplication factor used to compute radius
of sphere around source that includes tertiary nodes (DSPM). The radius is the average
edge length multiplied by this factor (default is 3)

• translate_grid (bool) – Translate the grid such that origin is (0, 0, 0) to perform
computations, which may increase accuracy when large values, e.g. UTM coordinates,
are used. When raytracing, src and rcv should be given in the original system, and
output raypath coordinates are also given in the original system (default if False)

static builder(filename, n_threads, cell_slowness, method, gradient_method, tt_from_rp, process_vel,
eps, maxit, min_dist, n_secondary, n_tertiary, radius_factor_tertiary, translate_grid=0)

Build instance of Mesh3d from VTK file

Parameters

• filename (str) – Name of file holding a vtkUnstructuredGrid. The grid must have
point or cell attribute named either ‘Slowness’, ‘slowness’, ‘Velocity’, ‘velocity’, or
‘P-wave velocity’. All cells must be of type vtkTetra

• Constructor (Other parameters are defined in) –

Returns
mesh – mesh instance

Return type
Mesh3d

compute_D(coord)
Return matrix of interpolation weights for velocity data points constraint

Parameters
coord (np.ndarray, shape (npts, 3)) – coordinates of data points

Returns
D – Matrix of interpolation weights

Return type
scipy csr_matrix, shape (npts, nparams)

compute_K(order=2, taylor_order=2, weighting=True, squared=True, s0inside=False, additional_points=0)
Compute smoothing matrices (spatial derivative)

Parameters

• order (int) – order of derivative (1 or 2, 2 by default)

• taylor_order (int) – order of taylors series expansion (1 or 2, 2 by default)

• weighting (bool) – apply inverse distance weighting (True by default)

• squared (bool) – Second derivative evaluated by taking the square of first derivative.
Applied only if order == 2 (True by default)

• s0inside (bool) – (experimental) ignore slowness value at local node (value is a
filtered estimate) (False by default)

• additional_points (int) – use additional points to compute derivatives (minimum
sometimes yield noisy results when rays are close to domain limits) (0 by default)

Returns
Kx, Ky, Kz – matrices for derivatives along x, y, & z

5.2. Module tmesh 41

ttcrpy, Release 1.3.4

Return type
tuple of csr_matrix

data_kernel_straight_rays(Tx, Rx)→ L
Raytracing with straight rays in 3D

Parameters

• Tx (np.ndarray) –

source coordinates, nTx by 3

– 1st column contains X coordinates,

– 2nd contains Y coordinates

– 3rd contains Z coordinates

• Rx (np.ndarray) –

receiver coordinates, nTx by 3

– 1st column contains X coordinates,

– 2nd contains Y coordinates

– 3rd contains Z coordinates

Returns
L – data kernel matrix (tt = L*slowness)

Return type
scipy csr_matrix

Note: Tx and Rx should contain the same number of rows, each row corresponding to a source-receiver
pair

get_grid_traveltimes(thread_no=0)
Obtain traveltimes computed at primary grid nodes

Parameters
thread_no (int) – thread used to computed traveltimes (default is 0)

Returns
tt – traveltimes

Return type
np ndarray, shape (nnodes,)

get_number_of_cells()

Returns
number of cells in grid

Return type
int

get_number_of_nodes()

Returns
number of nodes in grid

Return type
int

42 Chapter 5. Documentation for the python code

ttcrpy, Release 1.3.4

get_s0(hypo, slowness=None)
Return slowness at source points

Parameters

• hypo (np.ndarray with 5 columns) –

hypo holds source information, i.e.

– 1st column is event ID number

– 2nd column is origin time

– 3rd column is source easting

– 4th column is source northing

– 5th column is source elevation

• slowness (np ndarray, shape (nparams,) (optional)) – slowness at grid
nodes or cells (depending on cell_slowness)

Returns
s0 – slowness at source points

Return type
np.ndarray

is_outside(pts)
Check if points are outside grid

Parameters
pts (np ndarray, shape(npts, 3)) – coordinates of points to check

Returns
True if at least one point outside grid

Return type
bool

n_threads

number of threads for raytracing

Type
int

nparams

total number of parameters for mesh

Type
int

raytrace(source, rcv, slowness=None, thread_no=None, aggregate_src=False, compute_L=False,
return_rays=False)→ tt, rays, L

Perform raytracing

Parameters

• source (2D np.ndarray with 3, 4 or 5 columns) – see notes below

• rcv (2D np.ndarray with 3 columns) – Columns correspond to x, y and z coor-
dinates

• slowness (np ndarray, (None by default)) – slowness at grid nodes or cells
(depending on cell_slowness) if None, slowness must have been assigned previously

5.2. Module tmesh 43

ttcrpy, Release 1.3.4

• thread_no (int (None by default)) – Perform calculations in thread number
“thread_no” if None, attempt to run in parallel if warranted by number of sources and
value of n_threads in constructor

• aggregate_src (bool (False by default)) – if True, all source coordinates be-
long to a single event

• compute_L (bool (False by default)) – Compute matrices of partial derivative
of travel time w/r to slowness (or velocity if process_vel == True in constructor)

• return_rays (bool (False by default)) – Return raypaths

Returns

• tt (np.ndarray) – travel times for the appropriate source-rcv (see Notes below)

• rays (list of np.ndarray) – Coordinates of segments forming raypaths (if re-
turn_rays is True)

• L (list of csr_matrix or scipy csr_matrix) – Matrix of partial derivative of travel
time w/r to slowness. if input argument source has 5 columns or if slowness is defined
at nodes, L is a list of matrices and the number of matrices is equal to the number of
sources otherwise, L is a single csr_matrix

Notes

If source has 3 columns:

• Columns correspond to x, y and z coordinates

• Origin time (t0) is 0 for all points

If source has 4 columns:

• 1st column corresponds to origin times

• 2nd, 3rd & 4th columns correspond to x, y and z coordinates

If source has 5 columns:

• 1st column corresponds to event ID

• 2nd column corresponds to origin times

• 3rd, 4th & 5th columns correspond to x, y and z coordinates

For the latter case (5 columns), source and rcv should contain the same number of rows, each row corre-
sponding to a source-receiver pair. For the 2 other cases, source and rcv can contain the same number of
rows, each row corresponding to a source-receiver pair, or the number of rows may differ if aggregate_src
is True or if all rows in source are identical.

set_slowness(slowness)
Assign slowness to grid

Parameters
slowness (np ndarray, shape (nparams,)) –

set_traveltime_from_raypath(ttrp)
Set option to compute traveltime using raypath

Parameters
ttrp (bool) – option value

44 Chapter 5. Documentation for the python code

ttcrpy, Release 1.3.4

set_use_thread_pool(use_thread_pool)
Set option to use thread pool instead of parallel loop

Parameters
use_thread_pool (bool) – option value

set_velocity(velocity)
Assign velocity to grid

Parameters
velocity (np ndarray, shape (nparams,)) –

to_vtk(fields, filename)
Save mesh variables and/or raypaths to VTK format

Parameters

• fields (dict) – dict of variables to save to file. Variables should be np.ndarray of
size equal to either the number of nodes of the number of cells of the mesh, or a list
of raypath coordinates.

• filename (str) – Name of file without extension for saving (extension vtu will be
added). Raypaths are saved in separate files, and filename will be appended by the
dict key and have a vtp extension.

Notes

VTK files can be visualized with Paraview (https://www.paraview.org)

ttcrpy.tmesh.set_verbose(v)
Set verbosity level for C++ code

Parameters
v (int) – verbosity level

5.2. Module tmesh 45

https://www.paraview.org

ttcrpy, Release 1.3.4

46 Chapter 5. Documentation for the python code

CHAPTER

SIX

REFERENCES

The main papers describing the algorithms found in ttcrpy are:

• Nasr, Maher; Giroux, Bernard et Dupuis, Christian J. (2020). A hybrid approach to compute seismic travel times
in 3D tetrahedral meshes. Geophys. Prospect. DOI : 10.1111/1365-2478.12930 https://onlinelibrary.wiley.com/
doi/abs/10.1111/1365-2478.12930

• Giroux B et Larouche B. 2013. Task-parallel implementation of 3D shortest path raytracing for geophysical
applications, Computers & Geosciences, 54, 130-141. DOI : https://www.sciencedirect.com/science/article/pii/
S0098300412004128

• Nasr M, Giroux B, Dupuis JC, 2018. An optimized approach to compute traveltimes in 3D unstructured meshes.
SEG Technical Program Expanded Abstracts 2018, pp. 5073-5077. DOI : 10.1190/segam2018-2997918.1 https:
//library.seg.org/doi/10.1190/segam2018-2997918.1

• Giroux B. 2014. Comparison of grid-based methods for raytracing on unstructured meshes, SEG Technical
Program Expanded Abstracts 2014, pp. 3388-3392. DOI : https://library.seg.org/doi/10.1190/segam2014-1197.
1

• Giroux B, 2013. Shortest path raytracing in tetrahedral meshes. 75th EAGE Conference & Exhibition, Londres,
10-13 June. DOI : 10.3997/2214-4609.20130236 https://www.earthdoc.org/content/papers/10.3997/2214-4609.
20130236

47

https://onlinelibrary.wiley.com/doi/abs/10.1111/1365-2478.12930
https://onlinelibrary.wiley.com/doi/abs/10.1111/1365-2478.12930
https://www.sciencedirect.com/science/article/pii/S0098300412004128
https://www.sciencedirect.com/science/article/pii/S0098300412004128
https://library.seg.org/doi/10.1190/segam2018-2997918.1
https://library.seg.org/doi/10.1190/segam2018-2997918.1
https://library.seg.org/doi/10.1190/segam2014-1197.1
https://library.seg.org/doi/10.1190/segam2014-1197.1
https://www.earthdoc.org/content/papers/10.3997/2214-4609.20130236
https://www.earthdoc.org/content/papers/10.3997/2214-4609.20130236

ttcrpy, Release 1.3.4

48 Chapter 6. References

CHAPTER

SEVEN

INDICES AND TABLES

• genindex

• modindex

• search

49

ttcrpy, Release 1.3.4

50 Chapter 7. Indices and tables

PYTHON MODULE INDEX

t
ttcrpy.rgrid, 19
ttcrpy.tmesh, 35

51

ttcrpy, Release 1.3.4

52 Python Module Index

INDEX

B
builder() (ttcrpy.rgrid.Grid3d static method), 29
builder() (ttcrpy.tmesh.Mesh2d static method), 37
builder() (ttcrpy.tmesh.Mesh3d static method), 41

C
compute_D() (ttcrpy.rgrid.Grid2d method), 21
compute_D() (ttcrpy.rgrid.Grid3d method), 29
compute_D() (ttcrpy.tmesh.Mesh3d method), 41
compute_K() (ttcrpy.rgrid.Grid2d method), 21
compute_K() (ttcrpy.rgrid.Grid3d method), 29
compute_K() (ttcrpy.tmesh.Mesh3d method), 41
Constructor (ttcrpy.rgrid.Grid2d attribute), 20
Constructor (ttcrpy.rgrid.Grid3d attribute), 28
Constructor (ttcrpy.tmesh.Mesh2d attribute), 36
Constructor (ttcrpy.tmesh.Mesh3d attribute), 40

D
data_kernel_straight_rays() (ttcrpy.rgrid.Grid2d

static method), 22
data_kernel_straight_rays() (ttcrpy.rgrid.Grid3d

static method), 30
data_kernel_straight_rays()

(ttcrpy.tmesh.Mesh3d method), 42
dx (ttcrpy.rgrid.Grid2d attribute), 19, 22
dx (ttcrpy.rgrid.Grid3d attribute), 27, 30
dy (ttcrpy.rgrid.Grid3d attribute), 28, 30
dz (ttcrpy.rgrid.Grid2d attribute), 20, 22
dz (ttcrpy.rgrid.Grid3d attribute), 28, 30

G
get_grid_traveltimes() (ttcrpy.rgrid.Grid2d

method), 22
get_grid_traveltimes() (ttcrpy.rgrid.Grid3d

method), 31
get_grid_traveltimes() (ttcrpy.tmesh.Mesh2d

method), 37
get_grid_traveltimes() (ttcrpy.tmesh.Mesh3d

method), 42
get_number_of_cells() (ttcrpy.rgrid.Grid2d method),

22

get_number_of_cells() (ttcrpy.rgrid.Grid3d method),
31

get_number_of_cells() (ttcrpy.tmesh.Mesh2d
method), 37

get_number_of_cells() (ttcrpy.tmesh.Mesh3d
method), 42

get_number_of_nodes() (ttcrpy.rgrid.Grid2d method),
23

get_number_of_nodes() (ttcrpy.rgrid.Grid3d method),
31

get_number_of_nodes() (ttcrpy.tmesh.Mesh2d
method), 37

get_number_of_nodes() (ttcrpy.tmesh.Mesh3d
method), 42

get_s0() (ttcrpy.rgrid.Grid2d method), 23
get_s0() (ttcrpy.rgrid.Grid3d method), 31
get_s0() (ttcrpy.tmesh.Mesh3d method), 42
get_slowness() (ttcrpy.rgrid.Grid2d method), 23
get_slowness() (ttcrpy.rgrid.Grid3d method), 31
Grid2d (class in ttcrpy.rgrid), 19
Grid2d (ttcrpy.rgrid.Grid2d attribute), 20
Grid3d (class in ttcrpy.rgrid), 27
Grid3d (ttcrpy.rgrid.Grid3d attribute), 28

I
ind() (ttcrpy.rgrid.Grid3d method), 32
indc() (ttcrpy.rgrid.Grid3d method), 32
is_outside() (ttcrpy.rgrid.Grid2d method), 23
is_outside() (ttcrpy.rgrid.Grid3d method), 32
is_outside() (ttcrpy.tmesh.Mesh3d method), 43

M
Mesh2d (class in ttcrpy.tmesh), 35
Mesh2d (ttcrpy.tmesh.Mesh2d attribute), 36
Mesh3d (class in ttcrpy.tmesh), 39
Mesh3d (ttcrpy.tmesh.Mesh3d attribute), 40
module

ttcrpy.rgrid, 19
ttcrpy.tmesh, 35

N
n_threads (ttcrpy.rgrid.Grid2d attribute), 20, 23

53

ttcrpy, Release 1.3.4

n_threads (ttcrpy.rgrid.Grid3d attribute), 28, 32
n_threads (ttcrpy.tmesh.Mesh2d attribute), 36, 37
n_threads (ttcrpy.tmesh.Mesh3d attribute), 40, 43
nparams (ttcrpy.rgrid.Grid2d attribute), 20, 24
nparams (ttcrpy.rgrid.Grid3d attribute), 28, 32
nparams (ttcrpy.tmesh.Mesh2d attribute), 35, 37
nparams (ttcrpy.tmesh.Mesh3d attribute), 40, 43

R
raytrace() (ttcrpy.rgrid.Grid2d method), 24
raytrace() (ttcrpy.rgrid.Grid3d method), 33
raytrace() (ttcrpy.tmesh.Mesh2d method), 38
raytrace() (ttcrpy.tmesh.Mesh3d method), 43

S
set_delta() (ttcrpy.rgrid.Grid2d method), 25
set_epsilon() (ttcrpy.rgrid.Grid2d method), 25
set_gamma() (ttcrpy.rgrid.Grid2d method), 25
set_s2() (ttcrpy.rgrid.Grid2d method), 26
set_s2() (ttcrpy.tmesh.Mesh2d method), 38
set_s4() (ttcrpy.rgrid.Grid2d method), 26
set_s4() (ttcrpy.tmesh.Mesh2d method), 38
set_slowness() (ttcrpy.rgrid.Grid2d method), 26
set_slowness() (ttcrpy.rgrid.Grid3d method), 34
set_slowness() (ttcrpy.tmesh.Mesh2d method), 39
set_slowness() (ttcrpy.tmesh.Mesh3d method), 44
set_tilt_angle() (ttcrpy.rgrid.Grid2d method), 26
set_tilt_angle() (ttcrpy.tmesh.Mesh2d method), 39
set_traveltime_from_raypath()

(ttcrpy.rgrid.Grid2d method), 26
set_traveltime_from_raypath()

(ttcrpy.rgrid.Grid3d method), 34
set_traveltime_from_raypath()

(ttcrpy.tmesh.Mesh2d method), 39
set_traveltime_from_raypath()

(ttcrpy.tmesh.Mesh3d method), 44
set_use_thread_pool() (ttcrpy.rgrid.Grid2d method),

26
set_use_thread_pool() (ttcrpy.rgrid.Grid3d method),

34
set_use_thread_pool() (ttcrpy.tmesh.Mesh2d

method), 39
set_use_thread_pool() (ttcrpy.tmesh.Mesh3d

method), 44
set_velocity() (ttcrpy.rgrid.Grid2d method), 26
set_velocity() (ttcrpy.rgrid.Grid3d method), 34
set_velocity() (ttcrpy.tmesh.Mesh2d method), 39
set_velocity() (ttcrpy.tmesh.Mesh3d method), 45
set_verbose() (in module ttcrpy.rgrid), 35
set_verbose() (in module ttcrpy.tmesh), 45
set_Vp0() (ttcrpy.rgrid.Grid2d method), 25
set_Vs0() (ttcrpy.rgrid.Grid2d method), 25
set_xi() (ttcrpy.rgrid.Grid2d method), 26
set_xi() (ttcrpy.tmesh.Mesh2d method), 39

shape (ttcrpy.rgrid.Grid2d attribute), 20, 26
shape (ttcrpy.rgrid.Grid3d attribute), 28, 34

T
to_vtk() (ttcrpy.rgrid.Grid2d method), 27
to_vtk() (ttcrpy.rgrid.Grid3d method), 34
to_vtk() (ttcrpy.tmesh.Mesh2d method), 39
to_vtk() (ttcrpy.tmesh.Mesh3d method), 45
ttcrpy.rgrid

module, 19
ttcrpy.tmesh

module, 35

X
x (ttcrpy.rgrid.Grid2d attribute), 19, 27
x (ttcrpy.rgrid.Grid3d attribute), 27, 35

Y
y (ttcrpy.rgrid.Grid3d attribute), 27, 35

Z
z (ttcrpy.rgrid.Grid2d attribute), 19, 27
z (ttcrpy.rgrid.Grid3d attribute), 27, 35

54 Index

	Getting started
	Installing ttcrpy
	Requirements

	Simple examples

	Model discretization
	2D models
	3D models
	Assigning velocity/slowness

	Algorithms
	Shortest-Path
	Dynamic Shortest-Path
	Fast-Sweeping
	Raypath computation

	Computing traveltimes from raypaths

	Performance
	3D Rectilinear Grids
	Models
	Whole-grid accuracy
	Fast-Sweeping Method
	Shortest-Path Method
	Dynamic Shortest-Path Method
	Results by model

	Documentation for the python code
	Module rgrid
	Module tmesh

	References
	Indices and tables
	Python Module Index
	Index

