

ttcrpy

Welcome to ttcrpy’s documentation!

ttcrpy is a package for computing traveltimes and raytracing that was
developed with geophysical applications in mind, e.g. ray-based seismic/GPR
tomography and microseismic event location (joint hypocenter-velocity inversion).
The package contains code to perform computation on 2D and 3D rectilinear grids,
as well as 2D triangular and 3D tetrahedral meshes. Three different algorithms
have been implemented: the Fast-Sweeping Method, the Shortest-Path Method, and
the Dynamic Shortest-Path Method. Calculations can be run in parallel on a
multi-core machine. The core computing code is written in C++, and has been
wrapped with cython.

The source code of this project is hosted on GitHub [https://github.com/groupeLIAMG/ttcr].

If you use ttcrpy, please cite

Giroux B. 2021. ttcrpy: A Python package for traveltime computation and raytracing.
SoftwareX, vol. 16, 100834. doi: 10.1016/j.softx.2021.100834
https://www.sciencedirect.com/science/article/pii/S2352711021001217

Contents:

	Getting started
	Installing ttcrpy

	Simple examples

	Model discretization
	2D models

	3D models

	Assigning velocity/slowness

	Algorithms
	Shortest-Path

	Dynamic Shortest-Path

	Fast-Sweeping

	Computing traveltimes from raypaths

	Performance
	3D Rectilinear Grids

	Documentation for the python code
	Module rgrid

	Module tmesh

	References

Indices and tables

	Index

	Module Index

	Search Page

ttcrpy

Getting started

Installing ttcrpy

You can use pip to install the package by doing:

pip install ttcrpy

Requirements

	ttcrpy needs the following packages:
	
	numpy (https://numpy.org)

	scipy (https://www.scipy.org)

	vtk (https://www.vtk.org)

Simple examples

An example showing how easy it is to use the code can be found at
https://github.com/groupeLIAMG/ttcr/blob/master/examples/example_Grid3d.ipynb

A second example illustrating how to run jobs in parallel is given at
https://github.com/groupeLIAMG/ttcr/blob/master/examples/example_tmesh_parallel.ipynb

An example illutrating how to use gmsh to build models with specific geometries is
https://github.com/groupeLIAMG/ttcr/blob/master/examples/example4.ipynb

Raytracing in anisotorpic media is shown in
https://github.com/groupeLIAMG/ttcr/blob/master/examples/example5.ipynb

ttcrpy

Model discretization

ttcrpy supports a number of discretization schemes. 2D and 3D models are possible.

2D models

Rectilinear grids and triangular meshes can be built to perform the calculations.
By convention, the coordinate axis system is (x, z), e.g. when saving the models to
VTK format.

3D models

Rectilinear grids and tetrahedral meshes can be used for 3D calculations.

Assigning velocity/slowness

Prior to performing traveltime computations, it is necessary to define the slowness
distribution in space. Two options are possible.

[image: slowness assigned to cells]
[image: slowness assigned to nodes]
In the leftmost case, slowness values are assigned to the cells of the mesh.
In the rightmost case, slowness values are assigned to grid nodes. In the latter case, traveltime
computation between two nodes is done by taking the average of the slowness
values at the two nodes.

The choice mostly depends on the application. For example, in traveltime tomography
the problem is to use traveltime data to estimate the slowness model. Rectilinear
grids contain less cells than nodes, hence the number of unknown parameters is
less if slowness values are assigned to cells. With tetrahedral meshes, the number of
nodes is less than the number of cells, and the system to solve will be smaller
if slowness values are assigned to the nodes.

ttcrpy

Algorithms

ttcrpy contains implementations of three raytracing algorithms.

Shortest-Path

In the shortest path method (SPM), a grid of nodes is used to build a
graph by connecting each node to its neighbours. The connections
within the graph are assigned a length equal to the traveltime along
it. Hence, by virtue of Fermat’s principle which states that a seismic
ray follows the minimum traveltime curve, the shortest path between
two points within the graph can be seen as an approximation of the
raypath.

The SPM algorithm proceeds as follows. After construction of the
graph, all nodes are initialized to infinite time except the source
nodes which are assigned their “time zero” values. A priority queue is
then created and all source nodes are pushed into it. Priority queues
are a type of container specifically designed such that its first
element is always the one with highest priority, according to some
strict weak ordering condition. In our case, the highest priority is
attributed to the node having the smallest traveltime value. The
traveltime is computed for all nodes connected to the earliest source
node, the traveltime value at those nodes is updated with their new
value, the parent node is set to the source node, and these nodes then
are pushed into the queue. Then, the node with highest priority is
popped from the queue, and the traveltime is computed at all nodes
connected to it except the node parent. The traveltime and parent
values are updated if the traveltime is lower than the one previously
assigned, and the nodes not already in the queue are pushed in. This
process is repeated until the queue is empty.

One particular aspect of the ttcrpy implementation is the concept
of primary and secondary nodes. Primary nodes are located at the
vertexes of the cells, and secondary nodes are surrounding the cells
on the edges and faces. In 2D, only secondary edge nodes are
introduced. Using secondary nodes allows improving the accuracy and
angular coverage of the discrete raypaths. The raypath, however, is
an approximation which may deviate from the true raypath, as shown in
the figure below which illustrates the case for a homogeneous model.

[image: _images/spm_rp_bw.png]

Dynamic Shortest-Path

Using secondary nodes can be memory and computationally demanding in
3D. With the dynamic variant of the Shortest-Path, the density of
secondary nodes is intentionally set to a low value, and tertiary
nodes are added to increase the density in the vicinity of the source.

[image: _images/figure02.png]
In ttcrpy, tertiary nodes are placed within a sphere centered on
the source. Tests have shown that a radius of about three times the
mean cell edge length provides a good compromise between accuracy and
computation time.

Fast-Sweeping

The Fast-Sweeping Method avoids the requirement to maintain a sorted
list of nodes which can be time consuming and resource intensive. The
method relies on Gauss-Seidel iterations to propagate the wave
front. At each iteration, all the domain nodes are visited and
convergence is reached for nodes along characteristic curves parallel
to sweeping directions. The causality is ensured by using several
Gauss-Seidel iterations with different directions so that all
characteristic curves are scanned.

Raypath computation

Contrary to the SPM and DSPM, the FSM algorithm does not store raypath
segments in memory. When raypaths are needed, they must be computed
in a second step. The approach implemented in ttcrpy is to follow
the steepest travel time gradient, from the receiver to the source, as
illustrated in the figure below.

[image: _images/spm_rp_bw0.png]
[image: _images/spm_rp_bw1.png]
[image: _images/spm_rp_bw2.png]

Computing traveltimes from raypaths

With all three algorithms presented above, traveltimes are computed at
all grid nodes. In older version of ttcrpy, we used to
interpolate traveltimes at the receivers coordinates and return the
interpolated values. We have observed however that results are more
accurate if traveltimes are computed in a subsequent step, in which
raypaths are computed from the gradient of the traveltimes (as is done
with the FSM when raypaths are needed), and traveltimes integrated
along the raypaths.

Computing traveltime from raypaths is available as an option for the
fast-sweeping and dynamic shortest-path methods. Because the computational cost
of the second step is small in comparison to computing traveltime at the grid
nodes, the option is activated by default in 3D. We have observed however
that for some model with very complex velocity distributions,
convergence issues might arise with this option activated, and we
suggest to use the SPM method in the latter case. By design, SPM
implementations do not include that option, and traveltimes and
raypaths are always computed with values at grid nodes.

We have also observed that convergence issues arise when sources or receivers
are in the cells at the edges of the modeling domain. For that reason, special
care should be put when defining input models and parameters.

ttcrpy

Performance

3D Rectilinear Grids

Models

Performance tests were conducted using two different slowness models: a
layer-cake model and a vertical gradient model. Analytic solutions exist for
both models, which allows accuracy evaluation. Besides, tests were done for
three level of discretization: coarse, medium, and fine. The following figures
show the models.

[image: _images/layers_coarse.png]
[image: _images/layers_medium.png]
[image: _images/layers_fine.png]
[image: _images/gradient_coarse.png]
[image: _images/gradient_medium.png]
[image: _images/gradient_fine.png]
The following figures show the results of the tests. In these figures, models
are labelled by two letters: “L” or “G” for layers or gradient, and “C”, “M” or
“F” for coarse, medium or fine.

It is important to note that for the layers model, slowness values are assigned
to cells, whereas for the gradient model, slowness values are assigned to the
nodes of the grid.

Whole-grid accuracy

In this section, the accuracy of the traveltimes computed over the grid nodes
(without using the option to update the traveltimes using the raypaths) is
evaluated. Error is computed for nodes for which the coordinates are round numbers.

Fast-Sweeping Method

The results are shown first for the FSM. Accuracy is better for the gradient model,
except for the coarse models. In the latter case, cells are too large (as thick as
the layers) for the solver to yield satisfying accuracy.

[image: _images/accuracy_vs_cpu_fsm.png]

Shortest-Path Method

Results for the SPM are shown next. In the legend, the number next to the model
label is the number of secondary nodes employed. Increasing this number obviously
has an impact on both accuracy and computation time. Using 5 secondary nodes
appears to be a good compromise.

[image: _images/accuracy_vs_cpu_spm.png]

Dynamic Shortest-Path Method

Results for the DSPM are shown next, in a rather busy figure. In the legend, the
first number next to the model label is the number of secondary nodes, the second
number is the number of tertiary nodes, and the last number is the radius of the
sphere containing the tertiary nodes around the source.

[image: _images/accuracy_vs_cpu_dspm.png]

Results by model

The next set of figures contains the accuracy achieved with the three methods for
each model. In all cases, the lowest errors are obtained with the SPM with 15
secondary nodes (at the cost of very high computation time). For the gradient
model, the FSM is very competitive for the medium and fine models. Otherwise,
the DSPM often appears to offer a good compromise.

[image: _images/accuracy_vs_cpu_lc.png]
[image: _images/accuracy_vs_cpu_lm.png]
[image: _images/accuracy_vs_cpu_lf.png]
[image: _images/accuracy_vs_cpu_gc.png]
[image: _images/accuracy_vs_cpu_gm.png]
[image: _images/accuracy_vs_cpu_gf.png]

ttcrpy

Documentation for the python code

The original modules of ttcrpy are cgrid2d, cgrid3d, cmesh2d and cmesh3d. These
modules are deprecated in favor of rgrid and an upcoming tmesh modules.

Modules:

	Module rgrid
	Grid2d

	Grid3d

	set_verbose()

	Module tmesh
	Mesh2d

	Mesh3d

	set_verbose()

ttcrpy

Module rgrid

Raytracing on rectilinear grids

This module contains two classes to perform traveltime computation and
raytracing on rectilinear grids:

	Grid2d for 2D media

	Grid3d for 3D media

	Three algorithms are implemented
	
	the Shortest-Path Method

	the Fast-Sweeping Method

	the Dynamic Shortest-Path Method

	Slowness model can be defined in two ways:
	
	slowness constant within the voxels of the grid (the default)

	slowness defined at nodes of the grid

This code is part of ttcr (https://github.com/groupeLIAMG/ttcr)

	
class ttcrpy.rgrid.Grid2d

	class to perform raytracing with 2D rectilinear grids

	
x

	node coordinates along x

	Type:

	np.ndarray

	
z

	node coordinates along z

	Type:

	np.ndarray

	
dx

	node separation along x

	Type:

	float

	
dz

	node separation along z

	Type:

	float

	
shape

	number of parameters along each dimension

	Type:

	(int, int)

	
nparams

	total number of parameters for grid

	Type:

	int

	
n_threads

	number of threads for raytracing

	Type:

	int

	
Constructor

	

	
Grid2d(x, z, n_threads=1, cell_slowness=1, method='SPM', aniso='iso', eps=1.e-15, maxit=20, weno=1, rotated_template=0, nsnx=10, nsnz=10, n_secondary=3, n_tertiary=3, radius_factor_tertiary=3.0, tt_from_rp=0) → Grid2d

	

	Parameters:

	
	x (np.ndarray) – node coordinates along x

	z (np.ndarray) – node coordinates along z

	n_threads (int) – number of threads for raytracing (default is 1)

	cell_slowness (bool) – slowness defined for cells (True) or nodes (False) (default is 1)

	method (string) –
	raytracing method (default is SPM)
	
	’FSM’ : fast marching method

	’SPM’ : shortest path method

	’DSPM’ : dynamic shortest path method

	aniso (string) –
	type of anisotropy (implemented only for the SPM method)
	
	’iso’ : isotropic medium

	’elliptical’ : elliptical anisotropy

	’tilted_elliptical’ : tilted elliptical anisotropy

	’vti_psv’ : vertical transverse isotropy, P and SV waves

	’vti_sh’ : vertical transverse isotropy, SH waves

	’weakly_anelliptical’ : Weakly-Anelliptical formulation of B. Rommel

	eps (double) – convergence criterion (FSM) (default is 1e-15)

	maxit (int) – max number of sweeping iterations (FSM) (default is 20)

	weno (bool) – use 3rd order weighted essentially non-oscillatory operator (FSM)
(default is True)

	rotated_template (bool) – use rotated templates (FSM)

	nsnx (int) – number of secondary nodes in x (SPM) (default is 10)

	nsnz (int) – number of secondary nodes in z (SPM) (default is 10)

	n_secondary (int) – number of secondary nodes (DSPM) (default is 3)

	n_tertiary (int) – number of tertiary nodes (DSPM) (default is 3)

	radius_factor_tertiary (double) – multiplication factor used to compute radius of sphere around source
that includes tertiary nodes (DSPM). The radius is the average edge
length multiplied by this factor (default is 3)

	tt_from_rp (bool) – compute traveltime using raypaths (available for FSM and DSPM only)
(default is False)

Notes

For raytracing in anisotropic media, the convention for inputting slowness depends
on the model. For elliptical anisotropy, the method set_slowness is used to input
horizontal slowness, while for weakly anelliptical anisotropy, the method is used
to input vertical slowness.

	
compute_D(coord)

	Return matrix of interpolation weights for velocity data points
constraint

	Parameters:

	coord (np.ndarray, shape (npts, 2)) – coordinates of data points

	Returns:

	D – Matrix of interpolation weights

	Return type:

	scipy csr_matrix, shape (npts, nparams)

Note

In the current implementation, no check is made to see if the coordinates
are on a node, edge, or corner.

	
compute_K(order=1)

	Compute smoothing matrices

	Parameters:

	order (int) – order of smoothing operator, accept 1 or 2 (1 by default)

	Returns:

	Kx, Kz – matrices for derivatives along x & z

	Return type:

	tuple of csr_matrix

	
static data_kernel_straight_rays(Tx, Rx, grx, grz, aniso=False) → L

	Raytracing with straight rays in 2D

	Parameters:

	
	Tx (np.ndarray) –
	source coordinates, nTx by 2
	
	1st column contains X coordinates,

	2nd contains Z coordinates

	Rx (np.ndarray) –
	receiver coordinates, nTx by 2
	
	1st column contains X coordinates,

	2nd contains Z coordinates

	grx (np.ndarray) – grid node coordinates along x

	grz (np.ndarray) – grid node coordinates along z

	aniso (bool) – compute L for elliptically anisotropic medium (True) or isotropic
medium (False)

	Returns:

	L – data kernel matrix (tt = L*slowness)

	Return type:

	scipy csr_matrix

Note

Tx and Rx should contain the same number of rows, each row corresponding
to a source-receiver pair

	
dx

	node separation along x

	Type:

	float

	
dz

	node separation along x

	Type:

	float

	
get_grid_traveltimes(thread_no=0)

	Obtain traveltimes computed at primary grid nodes

	Parameters:

	thread_no (int) – thread used to computed traveltimes (default is 0)

	Returns:

	tt

	Return type:

	np ndarray, shape (nx, nz)

	
get_number_of_cells()

	
	Returns:

	number of cells in grid

	Return type:

	int

	
get_number_of_nodes()

	
	Returns:

	number of nodes in grid

	Return type:

	int

	
get_s0(hypo, slowness=None)

	Return slowness at source points

	Parameters:

	
	hypo (np.ndarray with 5 columns) –
	hypo holds source information, i.e.
	
	1st column is event ID number

	2nd column is origin time

	3rd column is source easting (X)

	4th column is source elevation (Z)

	slowness (np ndarray, shape (nx, nz) (optional)) – slowness at grid nodes or cells (depending on cell_slowness)
slowness may also have been flattened (with default ‘C’ order)

	Returns:

	s0 – slowness at source points

	Return type:

	np.ndarray

	
get_slowness()

	Returns slowness of grid

	Returns:

	slowness

	Return type:

	np ndarray, shape (nx, nz)

	
is_outside(pts)

	Check if points are outside grid

	Parameters:

	pts (np ndarray, shape(npts, 3)) – coordinates of points to check

	Returns:

	True if at least one point outside grid

	Return type:

	bool

	
n_threads

	number of threads for raytracing

	Type:

	int

	
nparams

	total number of parameters for grid

	Type:

	int

	
raytrace(source, rcv, slowness=None, xi=None, theta=None, Vp0=None, Vs0=None, delta=None, epsilon=None, gamma=None, thread_no=None, aggregate_src=False, compute_L=False, return_rays=False) → tt, rays, L

	Perform raytracing

	Parameters:

	
	source (2D np.ndarray with 2 or 3 columns) – see notes below

	rcv (2D np.ndarray with 2 columns) – Columns correspond to x, y and z coordinates

	slowness (np ndarray, shape (nx, nz) (None by default)) – slowness at grid nodes or cells (depending on cell_slowness)
slowness may also have been flattened (with default ‘C’ order)
if None, slowness must have been assigned previously

	xi (np ndarray, shape (nx, nz) (None by default)) – xi at grid cells (only for SPM & cell_slowness=True)
xi may also have been flattened (with default ‘C’ order)
if None, xi must have been assigned previously

	theta (np ndarray, shape (nx, nz) (None by default)) – theta at grid cells (only for SPM & cell_slowness=True)
theta may also have been flattened (with default ‘C’ order)
if None, theta must have been assigned previously

	Vp0 (np ndarray, shape (nx, nz) (None by default)) – Vp0 at grid cells (only for SPM & cell_slowness=True)
Vp0 may also have been flattened (with default ‘C’ order)
if None, Vp0 must have been assigned previously

	Vs0 (np ndarray, shape (nx, nz) (None by default)) – Vs0 at grid cells (only for SPM & cell_slowness=True)
Vs0 may also have been flattened (with default ‘C’ order)
if None, Vs0 must have been assigned previously

	delta (np ndarray, shape (nx, nz) (None by default)) – delta at grid cells (only for SPM & cell_slowness=True)
delta may also have been flattened (with default ‘C’ order)
if None, delta must have been assigned previously

	epsilon (np ndarray, shape (nx, nz) (None by default)) – epsilon at grid cells (only for SPM & cell_slowness=True)
epsilon may also have been flattened (with default ‘C’ order)
if None, epsilon must have been assigned previously

	gamma (np ndarray, shape (nx, nz) (None by default)) – gamma at grid cells (only for SPM & cell_slowness=True)
gamma may also have been flattened (with default ‘C’ order)
if None, gamma must have been assigned previously

	thread_no (int (None by default)) – Perform calculations in thread number “thread_no”
if None, attempt to run in parallel if warranted by number of
sources and value of n_threads in constructor

	aggregate_src (bool (False by default)) – if True, all source coordinates belong to a single event

	compute_L (bool (False by default)) – Compute matrices of partial derivative of travel time w/r to slowness

	return_rays (bool (False by default)) – Return raypaths

	Returns:

	
	tt (np.ndarray) – travel times for the appropriate source-rcv (see Notes below)

	rays (list of np.ndarray) – Coordinates of segments forming raypaths (if return_rays is True)

	L (scipy csr_matrix) – Matrix of partial derivative of travel time w/r to slowness

Notes

	If source has 2 columns:
	
	Columns correspond to x and z coordinates

	Origin time (t0) is 0 for all points

	If source has 3 columns:
	
	1st column corresponds to origin times

	2nd & 3rd columns correspond to x and z coordinates

source and rcv can contain the same number of rows, each row
corresponding to a source-receiver pair, or the number of rows may
differ if aggregate_src is True or if all rows in source are identical.

	
set_Vp0(v)

	Assign vertical Vp to grid (VTI medium)

	Parameters:

	v (np ndarray, shape (nx, nz)) – v may also have been flattened (with default ‘C’ order)

	
set_Vs0(v)

	Assign vertical Vs to grid (VTI medium)

	Parameters:

	v (np ndarray, shape (nx, nz)) – v may also have been flattened (with default ‘C’ order)

	
set_delta(d)

	Assign Thomsen delta parameter to grid (VTI medium, P-SV waves)

	Parameters:

	d (np ndarray, shape (nx, nz)) – d may also have been flattened (with default ‘C’ order)

	
set_epsilon(e)

	Assign Thomsen epsilon parameter to grid (VTI medium, P-SV waves)

	Parameters:

	e (np ndarray, shape (nx, nz)) – e may also have been flattened (with default ‘C’ order)

	
set_gamma(g)

	Assign Thomsen gamma parameter to grid (VTI medium, SH waves)

	Parameters:

	g (np ndarray, shape (nx, nz)) – g may also have been flattened (with default ‘C’ order)

	
set_s2(g)

	Assign weakly anelliptical parameter s2

	Parameters:

	g (np ndarray, shape (nx, nz)) – g may also have been flattened (with default ‘C’ order)

	
set_s4(g)

	Assign weakly anelliptical parameter s4

	Parameters:

	g (np ndarray, shape (nx, nz)) – g may also have been flattened (with default ‘C’ order)

	
set_slowness(slowness)

	Assign slowness to grid

	Parameters:

	slowness (np ndarray, shape (nx, nz)) – slowness may also have been flattened (with default ‘C’ order)

	
set_tilt_angle(theta)

	Assign tilted elliptical anisotropy angle to grid

	Parameters:

	theta (np ndarray, shape (nx, nz)) – theta may also have been flattened (with default ‘C’ order)

	
set_traveltime_from_raypath(ttrp)

	Set option to compute traveltime using raypath

	Parameters:

	ttrp (bool) – option value

	
set_use_thread_pool(use_thread_pool)

	Set option to use thread pool instead of parallel loop

	Parameters:

	use_thread_pool (bool) – option value

	
set_velocity(velocity)

	Assign velocity to grid

	Parameters:

	velocity (np ndarray, shape (nx, nz)) – velocity may also have been flattened (with default ‘C’ order)

	
set_xi(xi)

	Assign elliptical anisotropy ratio to grid

	Parameters:

	xi (np ndarray, shape (nx, nz)) – xi may also have been flattened (with default ‘C’ order)

	
shape

	number of parameters along each dimension

	Type:

	list of int

	
to_vtk(fields, filename)

	Save grid variables and/or raypaths to VTK format

	Parameters:

	
	fields (dict) – dict of variables to save to file. Variables should be np.ndarray of
size equal to either the number of nodes of the number of cells of
the grid, or a list of raypath coordinates.

	filename (str) – Name of file without extension for saving (extension vtr will be
added). Raypaths are saved in separate files, and filename will
be appended by the dict key and have a vtp extension.

Notes

VTK files can be visualized with Paraview (https://www.paraview.org)

	
x

	node coordinates along x

	Type:

	np.ndarray

	
z

	node coordinates along z

	Type:

	np.ndarray

	
class ttcrpy.rgrid.Grid3d

	class to perform raytracing with 3D rectilinear grids

	
x

	node coordinates along x

	Type:

	np.ndarray

	
y

	node coordinates along y

	Type:

	np.ndarray

	
z

	node coordinates along z

	Type:

	np.ndarray

	
dx

	node separation along x

	Type:

	float

	
dy

	node separation along y

	Type:

	float

	
dz

	node separation along z

	Type:

	float

	
shape

	number of parameters along each dimension

	Type:

	(int, int, int)

	
nparams

	total number of parameters for grid

	Type:

	int

	
n_threads

	number of threads for raytracing

	Type:

	int

	
Constructor

	

	
Grid3d(x, y, z, n_threads=1, cell_slowness=1, method='FSM', tt_from_rp=1, interp_vel=0, eps=1.e-15, maxit=20, weno=1, nsnx=5, nsny=5, nsnz=5, n_secondary=2, n_tertiary=2, radius_factor_tertiary=3.0, translate_grid=False) → Grid3d

	
	Parameters:

	
	x (np.ndarray) – node coordinates along x

	y (np.ndarray) – node coordinates along y

	z (np.ndarray) – node coordinates along z

	n_threads (int) – number of threads for raytracing (default is 1)

	cell_slowness (bool) – slowness defined for cells (True) or nodes (False) (default is 1)

	method (string) –
	raytracing method (default is FSM)
	
	’FSM’ : fast marching method

	’SPM’ : shortest path method

	’DSPM’ : dynamic shortest path

	tt_from_rp (bool) – compute traveltimes from raypaths (FSM or DSPM only) (default is 1)

	interp_vel (bool) – interpolate velocity instead of slowness at nodes (for
cell_slowness == False or FSM) (defauls is False)

	eps (double) – convergence criterion (FSM) (default is 1e-15)

	maxit (int) – max number of sweeping iterations (FSM) (default is 20)

	weno (bool) – use 3rd order weighted essentially non-oscillatory operator (FSM)
(default is True)

	nsnx (int) – number of secondary nodes in x (SPM) (default is 5)

	nsny (int) – number of secondary nodes in y (SPM) (default is 5)

	nsnz (int) – number of secondary nodes in z (SPM) (default is 5)

	n_secondary (int) – number of secondary nodes (DSPM) (default is 2)

	n_tertiary (int) – number of tertiary nodes (DSPM) (default is 2)

	radius_factor_tertiary (double) – multiplication factor used to compute radius of sphere around source
that includes tertiary nodes (DSPM). The radius is the average edge
length multiplied by this factor (default is 3)

	translate_grid (bool) – Translate the grid such that origin is (0, 0, 0) to perform
computations, which may increase accuracy when large values, e.g.
UTM coordinates, are used. When raytracing, src and rcv should be
given in the original system, and output raypath coordinates are
also given in the original system (default if False)

	
static builder(filename, n_threads=1, method='FSM', tt_from_rp=1, interp_vel=0, eps=1.e-15, maxit=20, weno=1, nsnx=5, nsny=5, nsnz=5, n_secondary=2, n_tertiary=2, radius_factor_tertiary=3.0, translate_grid=0)

	Build instance of Grid3d from VTK file

	Parameters:

	
	filename (str) – Name of file holding a vtkRectilinearGrid.
The grid must have point or cell attribute named either
‘Slowness’, ‘slowness’, ‘Velocity’, ‘velocity’, or
‘P-wave velocity’

	Constructor (Other parameters are defined in) –

	Returns:

	grid – grid instance

	Return type:

	Grid3d

	
compute_D(coord)

	Return matrix of interpolation weights for velocity data points
constraint

	Parameters:

	coord (np.ndarray, shape (npts, 3)) – coordinates of data points

	Returns:

	D – Matrix of interpolation weights

	Return type:

	scipy csr_matrix, shape (npts, nparams)

Note

In the current implementation, no check is made to see if the coordinates
are on a node, edge, face, or corner.

	
compute_K()

	Compute smoothing matrices (2nd order derivative)

	Returns:

	Kx, Ky, Kz – matrices for derivatives along x, y, & z

	Return type:

	tuple of csr_matrix

	
static data_kernel_straight_rays(Tx, Rx, grx, gry, grz, centers) -> L, (xc, yc, zc)

	Raytracing with straight rays in 3D

	Parameters:

	
	Tx (np.ndarray) –
	source coordinates, nTx by 3
	
	1st column contains X coordinates,

	2nd contains Y coordinates

	3rd contains Z coordinates

	Rx (np.ndarray) –
	receiver coordinates, nTx by 3
	
	1st column contains X coordinates,

	2nd contains Y coordinates

	3rd contains Z coordinates

	grx (np.ndarray) – grid node coordinates along x

	gry (np.ndarray) – grid node coordinates along y

	grz (np.ndarray) – grid node coordinates along z

	centers (bool) – return coordinates of center of cells (False by default)

	Returns:

	
	L (scipy csr_matrix) – data kernel matrix (tt = L*slowness)

	(xc, yc, zc) (tuple of np.ndarray) – vectors of coordinates of center of cells

Note

Tx and Rx should contain the same number of rows, each row corresponding
to a source-receiver pair

	
dx

	node separation along x

	Type:

	float

	
dy

	node separation along y

	Type:

	float

	
dz

	node separation along z

	Type:

	float

	
get_grid_traveltimes(thread_no=0)

	Obtain traveltimes computed at primary grid nodes

	Parameters:

	thread_no (int) – thread used to computed traveltimes (default is 0)

	Returns:

	tt – traveltimes

	Return type:

	np ndarray, shape (nx, ny, nz)

	
get_number_of_cells()

	
	Returns:

	number of cells in grid

	Return type:

	int

	
get_number_of_nodes()

	
	Returns:

	number of nodes in grid

	Return type:

	int

	
get_s0(hypo, slowness=None)

	Return slowness at source points

	Parameters:

	
	hypo (np.ndarray with 5 columns) –
	hypo holds source information, i.e.
	
	1st column is event ID number

	2nd column is origin time

	3rd column is source easting

	4th column is source northing

	5th column is source elevation

	slowness (np ndarray, shape (nx, ny, nz) (optional)) – slowness at grid nodes or cells (depending on cell_slowness)
slowness may also have been flattened (with default ‘C’ order)

	Returns:

	s0 – slowness at source points

	Return type:

	np.ndarray

	
get_slowness()

	Returns slowness of grid

	Returns:

	slowness

	Return type:

	np ndarray, shape (nx, ny, nz)

	
ind(i, j, k)

	Return node index

	Parameters:

	
	i (int) – index of node along x

	j (int) – index of node along y

	k (int) – index of node along z

	Returns:

	node index for a “flattened” grid

	Return type:

	int

	
indc(i, j, k)

	return cell index

	Parameters:

	
	i (int) – index of cell along x

	j (int) – index of cell along y

	k (int) – index of cell along z

	Returns:

	cell index for a “flattened” grid

	Return type:

	int

	
is_outside(pts)

	Check if points are outside grid

	Parameters:

	pts (np ndarray, shape(npts, 3)) – coordinates of points to check

	Returns:

	True if at least one point outside grid

	Return type:

	bool

	
n_threads

	number of threads for raytracing

	Type:

	int

	
nparams

	total number of parameters for grid

	Type:

	int

	
raytrace(source, rcv, slowness=None, thread_no=None, aggregate_src=False, compute_L=False, compute_M=False, return_rays=False)

	
	raytrace(source, rcv, slowness=None, thread_no=None,
	aggregate_src=False, compute_L=False, compute_M=False,
return_rays=False) -> tt, rays, M, L

Perform raytracing

	Parameters:

	
	source (2D np.ndarray with 3, 4 or 5 columns) – see notes below

	rcv (2D np.ndarray with 3 columns) – Columns correspond to x, y and z coordinates

	slowness (np ndarray, shape (nx, ny, nz) (None by default)) – slowness at grid nodes or cells (depending on cell_slowness)
slowness may also have been flattened (with default ‘C’ order)
if None, slowness must have been assigned previously

	thread_no (int (None by default)) – Perform calculations in thread number “thread_no”
if None, attempt to run in parallel if warranted by number of
sources and value of n_threads in constructor

	aggregate_src (bool (False by default)) – if True, all source coordinates belong to a single event

	compute_L (bool (False by default)) –
	Compute matrices of partial derivative of travel time w/r to slowness (implemeted for the SPM & DSPM with slowness
	defined at cells).

	compute_M (bool (False by default)) – Compute matrices of partial derivative of travel time w/r to velocity
Note : compute_M and compute_L are mutually exclusive

	return_rays (bool (False by default)) – Return raypaths

	Returns:

	
	tt (np.ndarray) – travel times for the appropriate source-rcv (see Notes below)

	rays (list of np.ndarray) – Coordinates of segments forming raypaths (if return_rays is True)

	M (list of csr_matrix) – matrices of partial derivative of travel time w/r to velocity.
the number of matrices is equal to the number of sources

	L (scipy csr_matrix) – Matrix of partial derivative of travel time w/r to slowness.
if input argument source has 5 columns, L is a list of matrices and
the number of matrices is equal to the number of sources
otherwise, L is a single csr_matrix

Notes

	If source has 3 columns:
	
	Columns correspond to x, y and z coordinates

	Origin time (t0) is 0 for all points

	If source has 4 columns:
	
	1st column corresponds to origin times

	2nd, 3rd & 4th columns correspond to x, y and z coordinates

	If source has 5 columns:
	
	1st column corresponds to event ID

	2nd column corresponds to origin times

	3rd, 4th & 5th columns correspond to x, y and z coordinates

For the latter case (5 columns), source and rcv should contain the same
number of rows, each row corresponding to a source-receiver pair.
For the 2 other cases, source and rcv can contain the same number of
rows, each row corresponding to a source-receiver pair, or the number
of rows may differ if aggregate_src is True or if all rows in source
are identical.

	
set_slowness(slowness)

	Assign slowness to grid

	Parameters:

	slowness (np ndarray, shape (nx, ny, nz)) – slowness may also have been flattened (with default ‘C’ order)

	
set_traveltime_from_raypath(ttrp)

	Set option to compute traveltime using raypath

	Parameters:

	ttrp (bool) – option value

	
set_use_thread_pool(use_thread_pool)

	Set option to use thread pool instead of parallel loop

	Parameters:

	use_thread_pool (bool) – option value

	
set_velocity(velocity)

	Assign velocity to grid

	Parameters:

	velocity (np ndarray, shape (nx, ny, nz)) – velocity may also have been flattened (with default ‘C’ order)

	
shape

	number of parameters along each dimension

	Type:

	list of int

	
to_vtk(fields, filename)

	Save grid variables and/or raypaths to VTK format

	Parameters:

	
	fields (dict) – dict of variables to save to file. Variables should be np.ndarray of
size equal to either the number of nodes of the number of cells of
the grid, or a list of raypath coordinates.

	filename (str) – Name of file without extension for saving (extension vtr will be
added). Raypaths are saved in separate files, and filename will
be appended by the dict key and have a vtp extension.

Notes

VTK files can be visualized with Paraview (https://www.paraview.org)

	
x

	node coordinates along x

	Type:

	np.ndarray

	
y

	node coordinates along y

	Type:

	np.ndarray

	
z

	node coordinates along z

	Type:

	np.ndarray

	
ttcrpy.rgrid.set_verbose(v)

	Set verbosity level for C++ code

	Parameters:

	v (int) – verbosity level

ttcrpy

Module tmesh

Raytracing on unstructured triangular and tetrahedral meshes

This module contains two classes to perform traveltime computation and
raytracing on unstructured meshes:

	Mesh2d for 2D media

	Mesh3d for 3D media

	Three algorithms are implemented
	
	the Shortest-Path Method

	the Fast-Sweeping Method

	the Dynamic Shortest-Path Method

	Slowness model can be defined in two ways:
	
	slowness constant within the voxels of the mesh (the default)

	slowness defined at nodes of the mesh

This code is part of ttcr (https://github.com/groupeLIAMG/ttcr)

	
class ttcrpy.tmesh.Mesh2d

	class to perform raytracing with triangular meshes

	
nparams

	total number of parameters for grid

	Type:

	int

	
n_threads

	number of threads for raytracing

	Type:

	int

	
Constructor

	

	
Mesh2d(nodes, triangles, n_threads=1, cell_slowness=1, method='FSM', aniso='iso', eps=1e-15, maxit=20, process_obtuse=1, n_secondary=5, n_tertiary=2, radius_factor_tertiary=2, tt_from_rp=0) → Mesh2d

	

	Parameters:

	
	nodes (np.ndarray, shape (nnodes, 2)) – node coordinates

	triangles (np.ndarray of int, shape (ntriangles, 3)) – indices of nodes forming the triangles

	n_threads (int) – number of threads for raytracing (default is 1)

	cell_slowness (bool) – slowness defined for cells (True) or nodes (False) (default is 1)

	method (string) –
	raytracing method (default is FSM)
	
	’FSM’ : fast marching method

	’SPM’ : shortest path method

	’DSPM’ : dynamic shortest path

	aniso (string) –
	type of anisotropy (implemented only for the SPM method)
	
	’iso’ : isotropic medium

	’elliptical’ : elliptical anisotropy

	’tilted_elliptical’ : tilted elliptical anisotropy

	’weakly_anelliptical’ : Weakly-Anelliptical formulation of B. Rommel

	eps (double) – convergence criterion (FSM) (default is 1e-15)

	maxit (int) – max number of sweeping iterations (FSM) (default is 20)

	process_obtuse (bool) – use method of Qian et al (2007) to improve accuracy for triangles
with obtuse angle (default is True)

	n_secondary (int) – number of secondary nodes (SPM) (default is 5)

	n_tertiary (int) – number of tertiary nodes (DSPM) (default is 2)

	radius_factor_tertiary (double) – multiplication factor used to compute radius of sphere around source
that includes tertiary nodes (DSPM). The radius is the average edge
length multiplied by this factor (default is 2)

	tt_from_rp (bool) – compute traveltimes using raypaths (default is False)

Notes

For raytracing in anisotropic media, the convention for inputting slowness depends
on the model. For elliptical anisotropy, the method set_slowness is used to input
horizontal slowness, while for weakly anelliptical anisotropy, the method is used
to input vertical slowness.

	
static builder(filename, n_threads, cell_slowness, method, eps, maxit, process_obtuse, n_secondary, n_tertiary, radius_factor_tertiary, tt_from_rp)

	Build instance of Mesh2d from VTK file

	Parameters:

	
	filename (str) – Name of file holding a vtkUnstructuredGrid.
The grid must have point or cell attribute named either
‘Slowness’, ‘slowness’, ‘Velocity’, ‘velocity’, or
‘P-wave velocity’. All cells must be of type vtkTriangle

	Constructor (Other parameters are defined in) –

	Returns:

	mesh – mesh instance

	Return type:

	Mesh2d

	
get_grid_traveltimes(thread_no=0)

	Obtain traveltimes computed at primary grid nodes

	Parameters:

	thread_no (int) – thread used to computed traveltimes (default is 0)

	Returns:

	tt – traveltimes

	Return type:

	np ndarray, shape (nnodes,)

	
get_number_of_cells()

	
	Returns:

	number of cells in grid

	Return type:

	int

	
get_number_of_nodes()

	
	Returns:

	number of nodes in grid

	Return type:

	int

	
n_threads

	number of threads for raytracing

	Type:

	int

	
nparams

	total number of parameters for mesh

	Type:

	int

	
raytrace(source, rcv, slowness=None, thread_no=None, aggregate_src=False, compute_L=False, return_rays=False) → tt, rays

	Perform raytracing

	Parameters:

	
	source (2D np.ndarray with 2 or 3 columns) – see notes below

	rcv (2D np.ndarray with 2 columns) – Columns correspond to x and z coordinates

	slowness (np ndarray, (None by default)) – slowness at grid nodes or cells (depending on cell_slowness)
if None, slowness must have been assigned previously

	thread_no (int (None by default)) – Perform calculations in thread number “thread_no”
if None, attempt to run in parallel if warranted by number of
sources and value of n_threads in constructor

	aggregate_src (bool (False by default)) – if True, all source coordinates belong to a single event

	compute_L (bool (False by default)) – Compute matrices of partial derivative of travel time w/r to
slowness

	return_rays (bool (False by default)) – Return raypaths

	Returns:

	
	tt (np.ndarray) – travel times for the appropriate source-rcv (see Notes below)

	rays (list of np.ndarray) – Coordinates of segments forming raypaths (if return_rays is True)

Notes

	If source has 2 columns:
	
	Columns correspond to x and z coordinates

	Origin time (t0) is 0 for all points

	If source has 3 columns:
	
	1st column corresponds to origin times

	2nd & 3rd columns correspond to x and z coordinates

source and rcv can contain the same number of rows, each row
corresponding to a source-receiver pair, or the number of rows may
differ if aggregate_src is True or if all rows in source are identical.

	
set_s2(s2)

	Assign energy-velocity parameter s2 to grid

	Parameters:

	s2 (np ndarray, shape (nparams,)) –

	
set_s4(s4)

	Assign energy-velocity parameter s4 to grid

	Parameters:

	s4 (np ndarray, shape (nparams,)) –

	
set_slowness(slowness)

	Assign slowness to grid

	Parameters:

	slowness (np ndarray, shape (nparams,)) –

	
set_tilt_angle(theta)

	Assign tilted elliptical anisotropy angle to grid

	Parameters:

	theta (np ndarray, shape (nparams,)) –

	
set_traveltime_from_raypath(ttrp)

	Set option to compute traveltime using raypath

	Parameters:

	ttrp (bool) – option value

	
set_use_thread_pool(use_thread_pool)

	Set option to use thread pool instead of parallel loop

	Parameters:

	use_thread_pool (bool) – option value

	
set_velocity(velocity)

	Assign velocity to grid

	Parameters:

	velocity (np ndarray, shape (nparams,)) –

	
set_xi(xi)

	Assign elliptical anisotropy ratio to grid

	Parameters:

	xi (np ndarray, shape (nparams,)) –

	
to_vtk(fields, filename)

	Save mesh variables and/or raypaths to VTK format

	Parameters:

	
	fields (dict) – dict of variables to save to file. Variables should be np.ndarray of
size equal to either the number of nodes of the number of cells of
the mesh, or a list of raypath coordinates.

	filename (str) – Name of file without extension for saving (extension vtu will be
added). Raypaths are saved in separate files, and filename will
be appended by the dict key and have a vtp extension.

Notes

VTK files can be visualized with Paraview (https://www.paraview.org)

	
class ttcrpy.tmesh.Mesh3d

	class to perform raytracing with tetrahedral meshes

	
nparams

	total number of parameters for grid

	Type:

	int

	
n_threads

	number of threads for raytracing

	Type:

	int

	
Constructor

	

	
Mesh3d(nodes, tetra, n_threads, cell_slowness, method, gradient_method, tt_from_rp, process_vel, eps, maxit, min_dist, n_secondary, n_tertiary, radius_factor_tertiary, translate_grid=False) → Mesh3d

	
	Parameters:

	
	nodes (np.ndarray, shape (nnodes, 3)) – node coordinates

	tetra (np.ndarray of int, shape (ntetra, 4)) – indices of nodes forming the tetrahedra

	n_threads (int) – number of threads for raytracing (default is 1)

	cell_slowness (bool) – slowness defined for cells (True) or nodes (False) (default is 1)

	method (string) –
	raytracing method (default is FSM)
	
	’FSM’ : fast marching method

	’SPM’ : shortest path method

	’DSPM’ : dynamic shortest path

	gradient_method (int) –
	method to compute traveltime gradient (default is 1)
	
	0 : least-squares first-order

	1 : least-squares second-order

	2 : Averaging-Based method

	tt_from_rp (bool) – compute traveltimes from raypaths (FSM or DSPM only) (default is 1)

	process_vel (bool) – process velocity instead of slowness at nodes when interpolating and
computing matrix of partial derivative of traveltime w/r to model
parameters (interpolation: for cell_slowness == False or FSM)
(defauls is False)

	eps (double) – convergence criterion (FSM) (default is 1e-15)

	maxit (int) – max number of sweeping iterations (FSM) (default is 20)

	min_dist (double) – tolerance for backward raytracing (default is 1e-5)

	n_secondary (int) – number of secondary nodes (SPM & DSPM) (default is 2)

	n_tertiary (int) – number of tertiary nodes (DSPM) (default is 2)

	radius_factor_tertiary (double) – multiplication factor used to compute radius of sphere around source
that includes tertiary nodes (DSPM). The radius is the average edge
length multiplied by this factor (default is 3)

	translate_grid (bool) – Translate the grid such that origin is (0, 0, 0) to perform
computations, which may increase accuracy when large values, e.g.
UTM coordinates, are used. When raytracing, src and rcv should be
given in the original system, and output raypath coordinates are
also given in the original system (default if False)

	
static builder(filename, n_threads, cell_slowness, method, gradient_method, tt_from_rp, process_vel, eps, maxit, min_dist, n_secondary, n_tertiary, radius_factor_tertiary, translate_grid=0)

	Build instance of Mesh3d from VTK file

	Parameters:

	
	filename (str) – Name of file holding a vtkUnstructuredGrid.
The grid must have point or cell attribute named either
‘Slowness’, ‘slowness’, ‘Velocity’, ‘velocity’, or
‘P-wave velocity’. All cells must be of type vtkTetra

	Constructor (Other parameters are defined in) –

	Returns:

	mesh – mesh instance

	Return type:

	Mesh3d

	
compute_D(coord)

	Return matrix of interpolation weights for velocity data points
constraint

	Parameters:

	coord (np.ndarray, shape (npts, 3)) – coordinates of data points

	Returns:

	D – Matrix of interpolation weights

	Return type:

	scipy csr_matrix, shape (npts, nparams)

	
compute_K(order=2, taylor_order=2, weighting=True, squared=True, s0inside=False, additional_points=0)

	Compute smoothing matrices (spatial derivative)

	Parameters:

	
	order (int) – order of derivative (1 or 2, 2 by default)

	taylor_order (int) – order of taylors series expansion (1 or 2, 2 by default)

	weighting (bool) – apply inverse distance weighting (True by default)

	squared (bool) – Second derivative evaluated by taking the square of first
derivative. Applied only if order == 2 (True by default)

	s0inside (bool) – (experimental) ignore slowness value at local node (value is a
filtered estimate) (False by default)

	additional_points (int) – use additional points to compute derivatives (minimum sometimes
yield noisy results when rays are close to domain limits)
(0 by default)

	Returns:

	Kx, Ky, Kz – matrices for derivatives along x, y, & z

	Return type:

	tuple of csr_matrix

	
data_kernel_straight_rays(Tx, Rx) → L

	Raytracing with straight rays in 3D

	Parameters:

	
	Tx (np.ndarray) –
	source coordinates, nTx by 3
	
	1st column contains X coordinates,

	2nd contains Y coordinates

	3rd contains Z coordinates

	Rx (np.ndarray) –
	receiver coordinates, nTx by 3
	
	1st column contains X coordinates,

	2nd contains Y coordinates

	3rd contains Z coordinates

	Returns:

	L – data kernel matrix (tt = L*slowness)

	Return type:

	scipy csr_matrix

Note

Tx and Rx should contain the same number of rows, each row corresponding
to a source-receiver pair

	
get_grid_traveltimes(thread_no=0)

	Obtain traveltimes computed at primary grid nodes

	Parameters:

	thread_no (int) – thread used to computed traveltimes (default is 0)

	Returns:

	tt – traveltimes

	Return type:

	np ndarray, shape (nnodes,)

	
get_number_of_cells()

	
	Returns:

	number of cells in grid

	Return type:

	int

	
get_number_of_nodes()

	
	Returns:

	number of nodes in grid

	Return type:

	int

	
get_s0(hypo, slowness=None)

	Return slowness at source points

	Parameters:

	
	hypo (np.ndarray with 5 columns) –
	hypo holds source information, i.e.
	
	1st column is event ID number

	2nd column is origin time

	3rd column is source easting

	4th column is source northing

	5th column is source elevation

	slowness (np ndarray, shape (nparams,) (optional)) – slowness at grid nodes or cells (depending on cell_slowness)

	Returns:

	s0 – slowness at source points

	Return type:

	np.ndarray

	
is_outside(pts)

	Check if points are outside grid

	Parameters:

	pts (np ndarray, shape(npts, 3)) – coordinates of points to check

	Returns:

	True if at least one point outside grid

	Return type:

	bool

	
n_threads

	number of threads for raytracing

	Type:

	int

	
nparams

	total number of parameters for mesh

	Type:

	int

	
raytrace(source, rcv, slowness=None, thread_no=None, aggregate_src=False, compute_L=False, return_rays=False) → tt, rays, L

	Perform raytracing

	Parameters:

	
	source (2D np.ndarray with 3, 4 or 5 columns) – see notes below

	rcv (2D np.ndarray with 3 columns) – Columns correspond to x, y and z coordinates

	slowness (np ndarray, (None by default)) – slowness at grid nodes or cells (depending on cell_slowness)
if None, slowness must have been assigned previously

	thread_no (int (None by default)) – Perform calculations in thread number “thread_no”
if None, attempt to run in parallel if warranted by number of
sources and value of n_threads in constructor

	aggregate_src (bool (False by default)) – if True, all source coordinates belong to a single event

	compute_L (bool (False by default)) – Compute matrices of partial derivative of travel time w/r to
slowness (or velocity if process_vel == True in constructor)

	return_rays (bool (False by default)) – Return raypaths

	Returns:

	
	tt (np.ndarray) – travel times for the appropriate source-rcv (see Notes below)

	rays (list of np.ndarray) – Coordinates of segments forming raypaths (if return_rays is True)

	L (list of csr_matrix or scipy csr_matrix) – Matrix of partial derivative of travel time w/r to slowness.
if input argument source has 5 columns or if slowness is defined at
nodes, L is a list of matrices and the number of matrices is equal
to the number of sources otherwise, L is a single csr_matrix

Notes

	If source has 3 columns:
	
	Columns correspond to x, y and z coordinates

	Origin time (t0) is 0 for all points

	If source has 4 columns:
	
	1st column corresponds to origin times

	2nd, 3rd & 4th columns correspond to x, y and z coordinates

	If source has 5 columns:
	
	1st column corresponds to event ID

	2nd column corresponds to origin times

	3rd, 4th & 5th columns correspond to x, y and z coordinates

For the latter case (5 columns), source and rcv should contain the same
number of rows, each row corresponding to a source-receiver pair.
For the 2 other cases, source and rcv can contain the same number of
rows, each row corresponding to a source-receiver pair, or the number
of rows may differ if aggregate_src is True or if all rows in source
are identical.

	
set_slowness(slowness)

	Assign slowness to grid

	Parameters:

	slowness (np ndarray, shape (nparams,)) –

	
set_traveltime_from_raypath(ttrp)

	Set option to compute traveltime using raypath

	Parameters:

	ttrp (bool) – option value

	
set_use_thread_pool(use_thread_pool)

	Set option to use thread pool instead of parallel loop

	Parameters:

	use_thread_pool (bool) – option value

	
set_velocity(velocity)

	Assign velocity to grid

	Parameters:

	velocity (np ndarray, shape (nparams,)) –

	
to_vtk(fields, filename)

	Save mesh variables and/or raypaths to VTK format

	Parameters:

	
	fields (dict) – dict of variables to save to file. Variables should be np.ndarray of
size equal to either the number of nodes of the number of cells of
the mesh, or a list of raypath coordinates.

	filename (str) – Name of file without extension for saving (extension vtu will be
added). Raypaths are saved in separate files, and filename will
be appended by the dict key and have a vtp extension.

Notes

VTK files can be visualized with Paraview (https://www.paraview.org)

	
ttcrpy.tmesh.set_verbose(v)

	Set verbosity level for C++ code

	Parameters:

	v (int) – verbosity level

ttcrpy

References

The main papers describing the algorithms found in ttcrpy are:

	Nasr, Maher; Giroux, Bernard et Dupuis, Christian J. (2020). A hybrid approach
to compute seismic travel times in 3D tetrahedral meshes. Geophys. Prospect.
DOI : 10.1111/1365-2478.12930
https://onlinelibrary.wiley.com/doi/abs/10.1111/1365-2478.12930

	Giroux B et Larouche B. 2013. Task-parallel implementation of 3D shortest
path raytracing for geophysical applications, Computers & Geosciences, 54,
130-141. DOI :
https://www.sciencedirect.com/science/article/pii/S0098300412004128

	Nasr M, Giroux B, Dupuis JC, 2018. An optimized approach to compute
traveltimes in 3D unstructured meshes. SEG Technical Program Expanded
Abstracts 2018, pp. 5073-5077. DOI : 10.1190/segam2018-2997918.1
https://library.seg.org/doi/10.1190/segam2018-2997918.1

	Giroux B. 2014. Comparison of grid-based methods for raytracing on
unstructured meshes, SEG Technical Program Expanded Abstracts 2014,
pp. 3388-3392. DOI :
https://library.seg.org/doi/10.1190/segam2014-1197.1

	Giroux B, 2013. Shortest path raytracing in tetrahedral meshes. 75th EAGE
Conference & Exhibition, Londres, 10-13 June. DOI : 10.3997/2214-4609.20130236
https://www.earthdoc.org/content/papers/10.3997/2214-4609.20130236

ttcrpy

 Python Module Index

 t

 		 	

 		
 t	

 	[image: -]
 	
 ttcrpy	

 	
 	
 ttcrpy.rgrid	

 	
 	
 ttcrpy.tmesh	

ttcrpy

Index

 B
 | C
 | D
 | G
 | I
 | M
 | N
 | R
 | S
 | T
 | X
 | Y
 | Z

B

 	
 	builder() (ttcrpy.rgrid.Grid3d static method)

 	(ttcrpy.tmesh.Mesh2d static method)

 	(ttcrpy.tmesh.Mesh3d static method)

C

 	
 	compute_D() (ttcrpy.rgrid.Grid2d method)

 	(ttcrpy.rgrid.Grid3d method)

 	(ttcrpy.tmesh.Mesh3d method)

 	compute_K() (ttcrpy.rgrid.Grid2d method)

 	(ttcrpy.rgrid.Grid3d method)

 	(ttcrpy.tmesh.Mesh3d method)

 	
 	Constructor (ttcrpy.rgrid.Grid2d attribute)

 	(ttcrpy.rgrid.Grid3d attribute)

 	(ttcrpy.tmesh.Mesh2d attribute)

 	(ttcrpy.tmesh.Mesh3d attribute)

D

 	
 	data_kernel_straight_rays() (ttcrpy.rgrid.Grid2d static method)

 	(ttcrpy.rgrid.Grid3d static method)

 	(ttcrpy.tmesh.Mesh3d method)

 	dx (ttcrpy.rgrid.Grid2d attribute), [1]

 	(ttcrpy.rgrid.Grid3d attribute), [1]

 	
 	dy (ttcrpy.rgrid.Grid3d attribute), [1]

 	dz (ttcrpy.rgrid.Grid2d attribute), [1]

 	(ttcrpy.rgrid.Grid3d attribute), [1]

G

 	
 	get_grid_traveltimes() (ttcrpy.rgrid.Grid2d method)

 	(ttcrpy.rgrid.Grid3d method)

 	(ttcrpy.tmesh.Mesh2d method)

 	(ttcrpy.tmesh.Mesh3d method)

 	get_number_of_cells() (ttcrpy.rgrid.Grid2d method)

 	(ttcrpy.rgrid.Grid3d method)

 	(ttcrpy.tmesh.Mesh2d method)

 	(ttcrpy.tmesh.Mesh3d method)

 	get_number_of_nodes() (ttcrpy.rgrid.Grid2d method)

 	(ttcrpy.rgrid.Grid3d method)

 	(ttcrpy.tmesh.Mesh2d method)

 	(ttcrpy.tmesh.Mesh3d method)

 	
 	get_s0() (ttcrpy.rgrid.Grid2d method)

 	(ttcrpy.rgrid.Grid3d method)

 	(ttcrpy.tmesh.Mesh3d method)

 	get_slowness() (ttcrpy.rgrid.Grid2d method)

 	(ttcrpy.rgrid.Grid3d method)

 	Grid2d (class in ttcrpy.rgrid)

 	(ttcrpy.rgrid.Grid2d attribute)

 	Grid3d (class in ttcrpy.rgrid)

 	(ttcrpy.rgrid.Grid3d attribute)

I

 	
 	ind() (ttcrpy.rgrid.Grid3d method)

 	indc() (ttcrpy.rgrid.Grid3d method)

 	
 	is_outside() (ttcrpy.rgrid.Grid2d method)

 	(ttcrpy.rgrid.Grid3d method)

 	(ttcrpy.tmesh.Mesh3d method)

M

 	
 	Mesh2d (class in ttcrpy.tmesh)

 	(ttcrpy.tmesh.Mesh2d attribute)

 	Mesh3d (class in ttcrpy.tmesh)

 	(ttcrpy.tmesh.Mesh3d attribute)

 	
 	
 module

 	ttcrpy.rgrid

 	ttcrpy.tmesh

N

 	
 	n_threads (ttcrpy.rgrid.Grid2d attribute), [1]

 	(ttcrpy.rgrid.Grid3d attribute), [1]

 	(ttcrpy.tmesh.Mesh2d attribute), [1]

 	(ttcrpy.tmesh.Mesh3d attribute), [1]

 	
 	nparams (ttcrpy.rgrid.Grid2d attribute), [1]

 	(ttcrpy.rgrid.Grid3d attribute), [1]

 	(ttcrpy.tmesh.Mesh2d attribute), [1]

 	(ttcrpy.tmesh.Mesh3d attribute), [1]

R

 	
 	raytrace() (ttcrpy.rgrid.Grid2d method)

 	(ttcrpy.rgrid.Grid3d method)

 	(ttcrpy.tmesh.Mesh2d method)

 	(ttcrpy.tmesh.Mesh3d method)

S

 	
 	set_delta() (ttcrpy.rgrid.Grid2d method)

 	set_epsilon() (ttcrpy.rgrid.Grid2d method)

 	set_gamma() (ttcrpy.rgrid.Grid2d method)

 	set_s2() (ttcrpy.rgrid.Grid2d method)

 	(ttcrpy.tmesh.Mesh2d method)

 	set_s4() (ttcrpy.rgrid.Grid2d method)

 	(ttcrpy.tmesh.Mesh2d method)

 	set_slowness() (ttcrpy.rgrid.Grid2d method)

 	(ttcrpy.rgrid.Grid3d method)

 	(ttcrpy.tmesh.Mesh2d method)

 	(ttcrpy.tmesh.Mesh3d method)

 	set_tilt_angle() (ttcrpy.rgrid.Grid2d method)

 	(ttcrpy.tmesh.Mesh2d method)

 	set_traveltime_from_raypath() (ttcrpy.rgrid.Grid2d method)

 	(ttcrpy.rgrid.Grid3d method)

 	(ttcrpy.tmesh.Mesh2d method)

 	(ttcrpy.tmesh.Mesh3d method)

 	
 	set_use_thread_pool() (ttcrpy.rgrid.Grid2d method)

 	(ttcrpy.rgrid.Grid3d method)

 	(ttcrpy.tmesh.Mesh2d method)

 	(ttcrpy.tmesh.Mesh3d method)

 	set_velocity() (ttcrpy.rgrid.Grid2d method)

 	(ttcrpy.rgrid.Grid3d method)

 	(ttcrpy.tmesh.Mesh2d method)

 	(ttcrpy.tmesh.Mesh3d method)

 	set_verbose() (in module ttcrpy.rgrid)

 	(in module ttcrpy.tmesh)

 	set_Vp0() (ttcrpy.rgrid.Grid2d method)

 	set_Vs0() (ttcrpy.rgrid.Grid2d method)

 	set_xi() (ttcrpy.rgrid.Grid2d method)

 	(ttcrpy.tmesh.Mesh2d method)

 	shape (ttcrpy.rgrid.Grid2d attribute), [1]

 	(ttcrpy.rgrid.Grid3d attribute), [1]

T

 	
 	to_vtk() (ttcrpy.rgrid.Grid2d method)

 	(ttcrpy.rgrid.Grid3d method)

 	(ttcrpy.tmesh.Mesh2d method)

 	(ttcrpy.tmesh.Mesh3d method)

 	
 	
 ttcrpy.rgrid

 	module

 	
 ttcrpy.tmesh

 	module

X

 	
 	x (ttcrpy.rgrid.Grid2d attribute), [1]

 	(ttcrpy.rgrid.Grid3d attribute), [1]

Y

 	
 	y (ttcrpy.rgrid.Grid3d attribute), [1]

Z

 	
 	z (ttcrpy.rgrid.Grid2d attribute), [1]

 	(ttcrpy.rgrid.Grid3d attribute), [1]

 _images/spm_rp_bw0.png

_images/spm_rp_bw1.png

_images/accuracy_vs_cpu_fsm.png
vam
Y
or
. < . <
- s H
. .
v v
= (36) sou anneras uean T 8233838
7 (50 35
£
') ')
. i
. .
v v
5wy

oua anjosqe uea

U time (5)

_images/accuracy_vs_cpu_gc.png
RMSE

0s

04

03

02

Mean absolute error

01

0200
o175
0150
0125
0100
0075
0050
0025

GC

O 0
b ’
s ® =
g
Se
£
E
4. N
H tn
i, =
. s
= e, L
w1 w1
0 6]
N
1. oS PO
S, 121 %,
. £10 .
. i %
06
04
LN
[
w1 w1
CPU time (s) CPU time (s)

AaarsrrrbrbrrrranmnEe

&m
spm-01
spm-02
spm-05
spm-10
spm-15

YYYYYYYVYYYYVAAAAAAALL

wpm22.4
@spm231
wpm232
wpm233
wpm23e
wspm2.41
wpm2.42
wpm2.43
wpm2.4e
@spm5 21
wpm5 22
wpm5 23
aspms 2.2
@spm5 31
wpm5 32
@pm533
aspms 3¢
aspm5 41
wspm5 42
wpm5.43
wspms 42

_images/spm_rp_bw2.png

_images/accuracy_vs_cpu_dspm.png
RMSE

DSPM

21
122
123
3%

11
132
133
13

04 30

LA N e
b oL

25

o RN

01

20

15

Mean absolute error
Mean relative error (%)

10

W wr owm| e Wy

143
1
221
w222
223
224
w231
w232
233
23
241
242
1243
24
1521
115

115
1524
11531
1532
115

115
1541
1542
11543
154

w10 ¢ 1 w0 e 10

Ty
S S S

06

os|® %
o] B
ol b

i w N

0075

RRIMSE (%)

0050 04

0025 :: Wy | 02 ::: LS

w10 ¢ 1 w0 e 10
CPU time (5) CPU time (5)

le54
le542
1e5.43
5.2

seesscscessssescssscsescesscssecsssoe
a4 aa e aaaaaaaaaaaadaaaaaaaaaaaadn
B N L
A A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAS
YT Y Y Y Y Y Y YYYYYYYYYYYYYIYYYYYYYYYYYYY
EEEEEEEEEEEESESEEEEESEESEEEEEEEEEEEEEEE

_images/accuracy_vs_cpu_lc.png
RMSE

Mean absolute error

040

0175

0150

0125

0100

0075

0050

0025

0000

Lc

Mean relative error (%)

10°

10

107

10

107

L

14

12

10

08

06

RRIMSE (%)

04

02

00

10

10°

10
U time (5)

107

10

10°

10
U time (5)

107

AaarsrrrbrbrrrranmnEe

&m
spm-01
spm-02
spm-05
spm-10
spm-15

YYYYYYYVYYYYVAAAAAAALL

wpm22.4
@spm231
wpm232
wpm233
wpm23e
wspm2.41
wpm2.42
wpm2.43
wpm2.4e
@spm5 21
wpm5 22
wpm5 23
aspms 2.2
@spm5 31
wpm5 32
@pm533
aspms 3¢
aspm5 41
wspm5 42
wpm5.43
wspms 42

_static/plus.png

_images/accuracy_vs_cpu_lf.png
Mean absolute error

RMSE

040
035

010
005

0175

0150

0125

0100

0075

0050

0025

0000

Mean relative error (%)

40
35
30
25
20

15

10
05
00

e »

107

10°

10°

107

10°

10°

T

RRIMSE (%)

14

12

10

08

06

04

02

00

N

[

10

107

10°
U time (5)

10°

10

107

10°
U time (5)

10°

AaarsrrrbrbrrrranmnEe

&m
spm-01
spm-02
spm-05
spm-10
spm-15

YYYYYYYVYYYYVAAAAAAALL

wpm22.4
@spm231
wpm232
wpm233
wpm23e
wspm2.41
wpm2.42
wpm2.43
wpm2.4e
@spm5 21
wpm5 22
wpm5 23
aspms 2.2
@spm5 31
wpm5 32
@pm533
aspms 3¢
aspm5 41
wspm5 42
wpm5.43
wspms 42

_images/accuracy_vs_cpu_gf.png
RMSE

04

03

02

Mean absolute error

01

00

0200
o175
0150
0125
0100
0075
0050
0025
0000

GF

-

Mean relative error (%)

40
35
30
25
20

15

10
05
00

10

107

10 10°

10 107 10°

10°

o~

RRIMSE (%)

16
14
12
10
08
05
0s
02
00

. [

10

107

10 10°
U time (5)

10 107 10°
U time (5)

10°

AaarsrrrbrbrrrranmnEe

&m
spm-01
spm-02
spm-05
spm-10
spm-15

YYYYYYYVYYYYVAAAAAAALL

wpm22.4
@spm231
wpm232
wpm233
wpm23e
wspm2.41
wpm2.42
wpm2.43
wpm2.4e
@spm5 21
wpm5 22
wpm5 23
aspms 2.2
@spm5 31
wpm5 32
@pm533
aspms 3¢
aspm5 41
wspm5 42
wpm5.43
wspms 42

_static/file.png

_images/accuracy_vs_cpu_gm.png
RMSE

0s

04

03

02

Mean absolute error

01

00

0200
o175
0150
0125
0100
0075
0050
0025
0000

GM

g
e
th
i
N
P
4
H «
i,
-
- . L3
o
W W W w w
e
144
12
g1
el 4
I
.
os
L 02 L
- L]
0
W W W w
CPU time (s) CPU time (s)

AaarsrrrbrbrrrranmnEe

&m
spm-01
spm-02
spm-05
spm-10
spm-15

YYYYYYYVYYYYVAAAAAAALL

wpm22.4
@spm231
wpm232
wpm233
wpm23e
wspm2.41
wpm2.42
wpm2.43
wpm2.4e
@spm5 21
wpm5 22
wpm5 23
aspms 2.2
@spm5 31
wpm5 32
@pm533
aspms 3¢
aspm5 41
wspm5 42
wpm5.43
wspms 42

_static/minus.png

_images/accuracy_vs_cpu_lm.png
Mean absolute error

RMSE

040
035

010
005

0175

0150

0125

0100

0075

0050

0025

0000

[

Mean relative eror (%)

107

10 107

[

RRIMSE (%)

14

12

10

08

06

04

02

00

>

AaarsrrrbrbrrrranmnEe

107
U time (5)

10 107
U time (5)

&m
spm-01
spm-02
spm-05
spm-10
spm-15

YYYYYYYVYYYYVAAAAAAALL

wpm22.4
@spm231
wpm232
wpm233
wpm23e
wspm2.41
wpm2.42
wpm2.43
wpm2.4e
@spm5 21
wpm5 22
wpm5 23
aspms 2.2
@spm5 31
wpm5 32
@pm533
aspms 3¢
aspm5 41
wspm5 42
wpm5.43
wspms 42

_images/accuracy_vs_cpu_spm.png
RMSE

0s

04

03

02

Mean absolute error

01

00

0200
o175
0150
0125
0100
0075
0050
0025
0000

SPM

° v a 4 -
« > 5
2
s
£
Sy g
« B 52 " .
@
£y
. £
H T,
§ar
N Ve
w10 1w 10 1 I
. 16
N N
PR 16 .
12
., 210
N = v
PR #
§os v []
o5
. o4 .
« F 2 02 - ¥
. .
- E L] -
Far ou| <
w0 1w 10 1 o

U time (5)

U time (5)

Prrrraddadccnnce

ool
02
o0
10
15
gm-01
gm02
om-05
gn10
on-15
o1
902
05
10
15

EEEERYYYVYAAALL

1c01
1c02
1c05
le10
le15
im0l
im0z
im0
im10
Im1s
1101
Ir02
05
1110
s

_images/discr1.png

nav.xhtml

 Table of Contents

 		
 Welcome to ttcrpy’s documentation!

 		
 Getting started

 		
 Installing ttcrpy

 		
 Requirements

 		
 Simple examples

 		
 Model discretization

 		
 2D models

 		
 3D models

 		
 Assigning velocity/slowness

 		
 Algorithms

 		
 Shortest-Path

 		
 Dynamic Shortest-Path

 		
 Fast-Sweeping

 		
 Raypath computation

 		
 Computing traveltimes from raypaths

 		
 Performance

 		
 3D Rectilinear Grids

 		
 Models

 		
 Whole-grid accuracy

 		
 Documentation for the python code

 		
 Module rgrid

 		
 Grid2d

 		
 Grid3d

 		
 set_verbose()

 		
 Module tmesh

 		
 Mesh2d

 		
 Mesh3d

 		
 set_verbose()

 		
 References

_images/gradient_coarse.png

_images/gradient_fine.png
SSOUMOIS

8
§

3.3e-01

09
08
07
06
05
04

_images/discr2.png

_images/figure02.png
® Primary

#® Secondary (edge)
v Secondary (face)
O Temporary (edge)
v Temporary (face)

VVvyyy

”VVVVVV

PPyvvvyeo ol
o

_images/layers_fine.png
SSOUMOIS

1.0e+00
09

08

07

06

05

04
3.3e-01

l

_images/layers_medium.png
SSOUMOIS

1.0e+00

[(iae-()

_images/gradient_medium.png
1.0e+00

09

08

07

06

05

04
3.3e-01

Slowness

_images/layers_coarse.png
Slowness

_images/spm_rp_bw.png

